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Notation ,

This section includes the most commonly used notation in this book. In order
to avoid departing too much from conventions normally used in literature on
turbulence modeling and general fluid mechanics, a few symbols denote more
than one quantity.

English Symbols

Symbol Definition

a Speed of sound; strain rate

A5kl Tensor in rapid-pressure-strain term

Ay, B,,C,, D, Coefficients in tridiagonal matrix equation

At Van Driest damping coefficient

Aij Slow pressure-strain iensor

bi; Dimensionless Reynolds-stress anisotropy tensor
cs Skin friction based on edge velocity, 7., /(1 pU2)
Cfor Skin friction based on freestream velocity, 7, /(3 pU2)
Cps Co Specific heat for constant pressure, volume

C Additive constant in the law of the wall

Ck Kolmogorov constant

Cp Pressure coefficient, (P — P,)/(5pU%)

Cs Smagorinsky constant

Cyj LES cross-term stress tensor

Cijk Turbulent transport tensor

Chim Stress-limiter strength

d Distance from closest surface
D Drag per unit body width; diameter
D;; The tensor 7,1, 0Uy, /0 + Tjm QU /Ox;
e Specific internal energy
E Total energy
E(k) Energy spectral density

Xi



Frion(y; 6)
EF, F,

G

G(x— &)
h

NOTATION

Dimensionless self-similar dissipation rate
Discretization error

Longitudinal correlation function
Vortex-stretching function

Turbulence-flux vectors

Dimensionless self-similar streamfunction
Klebanoff intermittency function

Mean-flow flux vectors

Amplitude factor in von Neumann stability analysis
LES filter

Specific enthalpy

Total enthalpy; channel height; shape factor, 6*/6
Heaviside step function

Unit vectors in z, y, z directions

Unit (identity) matrix

Stress-tensor invariants

Two-dimensional (j = 0), axisymmetric (7 = 1) index
Specific momentum flux (flux per unit mass)
Kinetic energy of turbulent fluctuations per unit mass
Geometric progression ratio

Surface roughness height

Distortion parameter

Dimensionless self-similar turbulence kinetic energy
Knudsen number

Turbulence length scale; characteristic eddy size
Mean free path

Mixing length

von Karman length scale

Characteristic length scale

Reattachment length

Leonard-stress tensor

Molecular mass; round/radial jet index

Magh number

Tensor in rapid-pressure-strain term

Convective Mach number

Turbulence Mach number, v2k/a

Turbulence Mach number, w./a,,

Normal distance; number density

Dimensionless self-similar eddy viscosity

CFL number

Navier-Stokes operator

Instantaneous static pressure
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Pij

P

Py

Pk, Pws Pe
Pr., Prs
Pt

q;

quw

qr;, 9z,
Qij

q Q

r, 8,

R
R,-j(x,t;r)
R
Re(x;t')
Ra'j (X, t; t"\)
R+

Re,

Rer

Re,

Rir

Ry

s

Sz'j

s, S

S

Si;

Q
Sij

Ses Sk’ Sus S'w

Ss
Sr

Xiii
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Preface ,

“How do you think you would do if you tried a shock-wave/boundary-layer
interaction with a stronger shock?”

The question came from one of the hardy souls who had endured the July
heat of Palm Springs to attend the Open Forum session tagged on at the end
of the 1973 AIAA summer meeting. Although my memory is a bit sketchy, I
believe he preceded his question by identifying himself as Robert MacCormack
of the NASA Ames Research Center and the conversation went like this.

“Well, this case causes the pressure to rise by a factor of about three and I
have a case running now that has a pressure rise of around five,” I replied. “I’ll
be able to tell you a week from now how things turn out.” Such computations
took about 40 hours of CPU time on a UNIVAC 1108 in those days.

“I was thinking of a shock that increases static pressure by a factor of sev-
enty,” MacCormack responded.

“Oh wow!” I was really intrigued. “These are first-of-a-kind computations,
and I really don’t know. Tackling that tough a problem would require some
contract support from NASA Ames and a lot of CDC 7600 time. Perhaps we
can talk about it after the session ends.”

That exchange indeed led to a series of contracts from NASA Ames and
helped me achieve a goal I had set for myself in high school, namely, to found
my own business before my thirtieth birthday. However, while my research efforts
under NASA Ames sponsorship produced useful results, I was unsuccessful in
obtaining a satisfactory solution for that factor-of-seventy pressure rise case. That
awaited a key improvement to the k-w model and the arrival of the extremely-fast,
and very inexpensive, personal computer that rests on my desktop today.

I mention that meeting of 33 summers ago to explain why writing the third
edition of Turbulence Modeling for CFD has been one of the greatest joys of
my life. This edition represents, for me, a mission accomplished. It’s a mission
I scoped out for myself three decades ago when I was fresh out of Caltech and
bound for that fateful 1973 AIAA meeting. What was that mission? To develop a
set of turbulence-model equations that, with an absolute minimum of complexity,
would accurately compute properties of a series of roughly 100 test cases.

Xvil
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Over the years I have assembled a set of test cases that [ deem essential for
validating a turbulence model. The set includes attached boundary layers, free
shear flows, backward-facing steps and shock-separated flows to mention a few,
most dealing with Mach numbers from incompressible speeds to hypersonic.
Over the years my list of test cases has expanded, but the core cases were
established long ago. One of those cases is the Mach 11 shock-wave/boundary-
layer interaction that Bob MacCormack cited at that 1973 AJAA meeting,

As time has passed, I have improved the k-w model that I inherited from my
PhD thesis adviser, Philip Saffman. With the publishing of the second edition
of the book, the model was quite suitable for all but shock-separated flows and
was demonstrably superior to all models of comparable complexity. As a result,
the model has gained wide acceptance in the Computational Fluid Mechanics
community. As an added benefit, other researchers have begun to address some
of the model’s shortcomings. Two key papers have appeared since I published
the second edition that had a major impact on my research efforts.

The first is by Johan Kok who demonstrated that cross diffusion can be added
to the model with no serious degradation of accuracy for attached boundary layers.
Most important, he did it without doubling the number of closure coefficients by
introducing complicated “blending functions.” I had dabbled with cross diffusion
in the early 1990s but abandoned it for a variety of reasons, one of which was
concern about its adverse impact on boundary layers.

The second is a paper by a longtime friend, George Huang, who showed
me how profound the effect of a stress limiter is, and how it could resolve the
model’s shortcomings for shock-separated flows at all Mach numbers. Again, I
had tried it about a decade ago, achieved some success for a transonic airfoil, but
never formally integrated a limiter into the model. With the formal integration
of cross diffusion and a stress limiter into the k-w model, my 100-or-so test
case mission has been accomplished — with just 6 closure coefficients and no
compressibility modifications!

And, oh yes, the model now does a nice job computing properties of that
flow my friend Bob MacCormack asked about way back in 1973. It’s taken me
an awful lot longer than I could have ever predicted, but I suppose that’s the
naturc of scientific reékearch and — even more significantly — the erratic nature
of funds available for basic research.

Of course, more research and validation needs to be done in order to arrive
at a general-purpose turbulence model. None of my test cases are for three-
dimensional flows, for example, and only a couple involve heat transfer. Ap-
plying any empirical model beyond the types of applications for which it has
been validated is an adventure that may or may not yield satisfactory results. So,
while I have now accomplished the research task I laid out for myself way back
in the 1970s, T would be the first to say that we can still aim even higher. Many
of today’s turbulence researchers are indeed doing precisely that.
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In addition to my desire to document my personal contributions to the field,
the third edition of Turbulence Modeling for CFD has been motivated by its
continuing popularity. It has been adopted for course use in universities all
around the world and I have presented a short course based on the book many
times in the United States and beyond since I first published it in 1993. Pemand
for the book continues to exceed all of my expectations, and I am very grateful
to the turbulence-research and CFD communities. While gew developments in
the field have come far less frequently since the book first appeared, a few useful
advances, such as the two noted above, have been made. I have been as diligent
as possible in integrating new developments into the third edition.

The most noteworthy development in turbulence modeling since publication
of the second edition has been the detached-eddy simulation (DES) concept.
Consequently, I have added a major section to Chapter 8 addressing this promis-
ing technique. Other revisions the reader will find in the third edition of the text
are as follows.

¢ I have made significant improvements to the k-w and Stress-w models that
have been the focus of my own research, most notably with regard to the
proper role of cross diffusion in such models and a stress limiter for the
k-w model. I have also revised and improved the boundary conditions for
surfaces that are rough and/or have mass transfer.

¢ As with previous editions, the book comes with a companion Compact
Disk (CD) that contains source code and documentation for several useful
computer programs. In addition to the software provided with the first and
second editions, the CD includes a two-dimensional/axisymmetric Navier-
Stokes program and some simple grid-generation software. The CD also
contains input-data files for most of the test cases used in this book to test
and validate turbulence models.

e ‘The software on the CD has been modernized and optimized for personal
computers running the Microsoft Windows operating system. All programs
have menu-driven input-data preparation and plotting utilities, written ern-
tirely in Visual C++, that provide a user-friendly environment.

* I bave added some new homework problems to enhance the book’s utility
in the classrooni.

Turbulence Modeling for CFD maintains its basic theme, which is description
of and development tools for engineering models of turbulence. While it is
currently fashionable for turbulence researchers to focus their efforts on Direct
Numerical Stmulation, Large Eddy Simulation, Detached Eddy Simulation, etc.,
these models are not yet suitable for day-to-day engineering design and analysis.
As in earlier editions of Turbulence Modeling for CFD, Chapter 8 provides a brief
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introduction with suitable references to provide the reader with a good starting
point for further study. However, such methods are worthy of a complete text.
Further expansion of this text’s coverage of these topics would run counter to
the overall theme of the book, which would dilute its quality.

This book originated from the lecture notes that [ used in presenting a graduate
course on turbulence modeling at the University of Southern California. While
several computational fluid dynamics (CFD) texts include some information about
turbulence modeling, very few texts dealing exclusively with turbulence modeling
have been written. As a consequence, turbulence modeling is regarded by many
CFD researchers as “black magic,” lacking in rigor and physical foundation.
This book has been written to show that turbulence modeling can be done in
a systematic and physically-sound manner. This is not to say all turbulence
modeling has been done in such a manner, for indeed many ill-conceived and ill-
fated turbulence models have appeared in engineering journals. However, with
judicious use of relatively simple mathematical tools, systematic construction of
a well-founded turbulence model is not only possible but can be an exciting and
challenging research project.

Thus, the primary goal of this book is to provide a systematic approach to
developing a set of constitutive equations suitable for computation of turbulent
flows. The engineer who feels no existing turbulence model is suitable for his or
her needs and wishes to modify an existing model or to devise a new model will
benefit from this feature of the text. A methodology is presented in Chapters 3
and 4 for devising and testing such equations. The methodology is illustrated
in great detail for two-equation turbulence models. However, it is by no means
limited to such models and is used again in Chapter 6 for a full stress-transport
model, but with less detail.

A secondary goal of this book is to provide a rational way for deciding how
complex a model is required for a given problem. The engineer who wishes to
select an existing model that is sufficient for his or her needs will benefit most
from this feature of the text. Chapter 3 begins with the simplest turbulence models
and subsequent chapters chart a course leading to some of the most complex
models that have been applied to a nontrivial turbulent-flow problem. Two
things are done at eadh level of complexity. First, the range of applicability of the
model is estimated. Second, many of the models are applied to the same flows,
including comparisons with measurements, to illustrate how accuracy changes
with complexity.

The methodology makes extensive use of tensor analysis, similarity solutions,
singular-perturbation methods, and numerical procedures. The text assumes the
user has limited prior knowledge of these mathematical concepts and provides
what is needed in the main text or in the Appendices. For example, Appendix A
introduces Cartesian tensor analysis to facilitate manipulation of the Navier-
Stokes equation, which is done extensively in Chapter 2. Chapter 3 shows, in
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detail, the way a similarity solution is generated. Similarity solutions are then
obtained for the turbulent mixing layer, jet and far wake. Appendix B presents
elements of singular-perturbation theory. Chapters 4, 5 and 6 use these tools to
dissect model-predicted features of the turbulent boundary layer.

No book on turbulence-model equations is complete without a discussion of
numerical-solution methods. Anyone who has ever tried to obtain a numeri-
cal solution to a set of turbulence-transport equations can, attest to this. Often,
standard numerical procedures just won’t work and alternative methods must be
found to obtain accurate converged solutions. Chapter 7 focuses on numerical
methods and elucidates some of the commonly encountered problems such as
stiffness, sharp turbulent-nonturbulent interfaces, and difficulties attending tur-
bulence related time scales.

The concluding chapter presents a brief overview of new horizons, including
direct numerical simulation (DNS), large-eddy simulation (LES), detached-eddy
simulation (DES) and the interesting mathematical theory of chaos.

Since turbulence modeling is a key CFD ingredient, the text would be incom-
plete without companion software implementing numerical solutions to standard
turbulence-model equations. The book’s companion CD includes several pro-
grams with Fortran source code and detailed user’s information. The pregrams
all have similar structure and can be easily modified tc include new models.

The material presented in this book is appropriate for a one-semester, first or
second year graduate course, or as a reference text for a CFD course. Successful
study of this material requires an understanding of viscous-flow and boundary-
layer theory. Some degree of proficiency in solving partiai differential equations
is also needed. A working knowledge of computer programming, preferably in
FORTRAN, the most common programming language in engineering, will help
the reader gain maximum benefit from the software on the companion CD.

I have been blessed over the years with a series of colleagues and friends
who have contributed to the quality and accuracy of the material contained in
Turbulence Modeling for CFD. Their contributions are as follows.

Third Edition: Drs. T. Coakley and M. Olsen were extremely helpful in their
review of the manuscript. Their close attention to detail and extensive knowledge
of turbulence modeling made them outstanding reviewers. Drs. J. Forsythe,
P. J. Roache and G. Huang provided several figures and valuable research papers.

Second Edition: Prof. P. Bradshaw reviewed the entire manuscript as I wrote
it, and taught me a lot through numerous discussions, comments and suggestions
that greatly improved the final draft. Prof. Bradshaw also assisted in preparation
of key material in Chapters 5 and 8, adding physical insight and state-of-the-art
information. One of my best graduate students, Patrick Yee, was very thorough in
reviewing the second edition, including the solutions manual. Dr. C. G. Speziale
also provided an excellent review.
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First Edition: Prof. P. Bradshaw and Dr. C. G. Speziale reviewed the
manuscript and offered a great deal of insight in the process. Dr. D. D. Knight
helped me understand why 1 had to write this book, reviewed the entire text
and assisted in its preparation by introducing me to IFIgX. My favorite Caltech
mathematics teacher, Dr. D. S. Cohen, made sure I omitted the dot over ev-
ery ¢ and crossed every z in Appendix B. Drs. F. R. Menter, C. C. Horstman
and P. R. Spalart were kind enough to provide results of several of their com-
putations in digital form. Thanks are also due for the support and help of
several other friends, most notably Dr. P. J. Roache, Dr. J. A. Domaradzki and
Prof. R. M. C. So.

I extend my thanks to Dr. L. G. Redekopp of USC for encouraging and
supporting development of the course for which this book was originally intended.
I also thank the nine students who were the first to take the course that this
book was written for. Their patience was especially noteworthy, particularly
in regard to typographical errors in the homework problems! That outstanding
group of young engineers is D. Foley, R. T. Holbrook, N. Kale, T.-S. Leu, H. Lin,
T. Magee, S. Tadepalli, P. Taniguchi and D. Hammond.

Finally, I owe a lifelong debt to my loving wife Barbara for tolerating the
hectic pace first in college and then in the business world. Without her, this
beok would not have been possible.

David C. Wilcox

NOTE: We have taken great pains to assure the accuracy of this manuscript.
However, if you find errors, please report them to DCW Industries” Home
Page on the Worldwide Web at http://dewindustries.com. As long as
we maintain a WWW page, we will provide an updated list of known
typographical errors.




Chapter 1

Introduction

This book has been described by many writers as the “how-to guide for engineers
interested in computing turbulent flows.” This description is consistent with the
contents of the book in the following sense. While the text provides some dis-
cussion of the physics of turbulent flows, it is by no means a thorough treatise on
the complexities of the phenomenon. Rather, the discussion focuses on the most
significant aspects of turbulence that underlie the engineering approximations
introduced over the decades to facilitate affordable numerical computations.

In other words, the book presents as much of the physics of turbulence
as necessary to understand why existing modeling approximations have been
made—but no more. This is true because the theme of the book is the modeling
of turbulence, which begins with understanding the physics involved. However,
it also involves cotrelation of measurements, engineering judgment, a healthy
dose of mathematics and a lot of trial and error.

The field is, to some extent, a throwback to the days of Prandtl, Taylor, von
Kédrmaén and all the many other clever engineers who spent a good portion of their
time devising engineering approximations and models describing complicated

Figure 1.1: Pioneers of turbulence modeling; from left Ludwig Prandtl (1875-
1953), Geoffrey Taylor (1886-1975) and Theodore von Kdrmdn (1881-1963).
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physical flows. The best efforts in turbulence modeling have been an attempt to
develop a set of constitutive equations suitable for application to general turbulent
flows, and to do it in as elegant and physically sound a manner as possible. These
three fluid mechanics pioneers helped establish a solid framework for several
generations of engineers to work in.

Turbulence modeling is one of three key elements in Computational Fluid
Dynamics (CFD). Very precise mathematical theories have evolved for the other
two key elements, viz., grid generation and algorithm development. By its nature
— in creating a mathematical model that approximates the physical behavior of
turbulent flows — far less precision has been achieved in turbulence modeling.
This 1s not really a surprising event since our objective has been to approximate
an extremely complicated phenomenon. Two key questions we must ask at the
outset are the following. What constitutes the ideal turbulence model and how
complex must it be?

1.1 Definition of an Ideal Turbulence Model

Simplicity combined with physical insight seems to have been a common de-
nominator of the work of great men like Prandti, Tayler and von Kérman. Using
their work as a gauge, an ideal model should introduce the minimum amount
of complexity while capturing the essence of the relevant physics. This
description of an ideal medel serves as the keystone of this text.

1.2 How Complex Must a Turbulence Model Be?

Aside from any physical considerations, turbulence is inherently three dimen-
sional and time dependent. Thus, an enormous amount of information is re-
quired to completely describe a turbulent flow. Fortunately, we usually require
something less than a complete time history over all spatial coordinates for every
flow property. Thus, for a given turbulent-flow application, we must pose the
following question. Given a set of initial and/or boundary conditions, how do we
predict the relevant properties of the flow? What properties of a given flow are
relevant is generally dictated by the application. For the simplest applications,
we may require only the skin-friction and heat-transfer coefficients. More eso-
teric applications may require detailed knowledge of energy spectra, turbulence
fluctuation magnitudes and scales.

Certainly, we should expect the complexity of the mathematics required for a
given application to increase as the amount of required flowfield detail increases.
On the one hand, if all we require is skin friction for an attached flow, a simple
mixing-length model (Chapter 3) may suffice. Such models are well developed
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and can be implemented with very little specialized knowledge. On the other
hand, if we desire a complete time history of every aspect of a turbulent flow,
only a solution to the complete Navier-Stokes equation will suffice. Such a
solution requires an extremely accurate numerical solver and may require use
of subtle transform techniques, not to mention vast computer resources. Most
engineering problems fall somewhere between these two extremes.

Thus, once the question of how much detail we need is answered, the
level of complexity of the model follows, qualitatively sf.ueaking.l In the spirit
of Prandtl, Taylor and von Karman, the conscientious engineer will strive to usc
as conceptually simple an approach as possible to achieve his ends. Overkill is
often accompanied by unexpected difficulties that, in CFD applications, almost
always manifest themselves as numerical difficulties!

1.3 Comments on the Physics of Turbulence

Before plunging into the mathematics of turbulence, it is worthwhile to first
discuss physical aspects of the phenomenon. The following discussion is not
intended as a complete description of this complex topic. Rather, we focus upon
a few features of interest in engineering applications, and in construction of a
mathematical model. For a more-complete introduction, refer to basic texts on
the physics of turbulence such as those by Hinze (1975), Tennekes and Lumley
(1983), Landahl and Mollo-Christensen (1992), Libby (1996) or Durbin and
Pettersson Reif (2001).

1.3.1 Importance of Turbulence in Practical Situations

For “small enough” scales and “low enough” velocities, in the sense that the
Reynolds number is not too large, the equations of motion for a viscous fluid have
well-behaved, steady solutions. Such flows are controlled by viscous diffusion
of vorticity and momentum. The motion is termed laminar and can be observed
experimentally and in nature.

At larger Reynolds numbers, the fluid’s inertia overcomes the viscous stresses,
and the laminar motion becomes unstable. Rapid velocity and pressure fluctua-
tions appear and the motion becomes inherently three dimensional and unsteady.
When this occurs, we describe the motion as being turbulent. In the cases of
fully-developed Couette flow and pipe flow, for example, laminar flow is assured
only if the Reynolds number based on maximum velocity and channel height or
pipe radius is less than 1500 and 2300, respectively.

IThis is not a foolproof criterion, however. For example, a complicated model may be required
to predict even the simplest properties of a very complex flow.
P Ty comp
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Figure 1.2: Examples of turbulent motion. Upper left: a cumulus cloud; Upper
right: flow in the wake of a cylinder; Bottom: flow in the wake of a bullet
[Bottom photograph courtesy of Corrsin and Kistler (1954)].

Virtually all flows of practical engineering interest are turbulent. Flow past
vehicles such as rockets, airplanes, ships and automobiles, for example, is al-
ways turbulent. Turbl.llence dominates 1n geophysical applications such as river
currents, the planetary boundary layer and the motion of clouds (Figure 1.2).
Turbulence even plays a role at the breakfast table, greatly enhancing the rate at
which sugar and cream mix in a cup of coffee!

Turbulence matters even in applications that normally involve purely laminar
flow. For example, blood flow is laminar in the arteries and veins of a healthy
human. However, the presence of turbulence generally corresponds to a health
problem such as a defective heart valve.

Turbulent flow always occurs when the Reynolds number is large. For slightly
viscous fluids such as water and air, “large” Reynolds number corresponds to
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anything stronger than a tiny swirl, a small breeze or a puff of wind. Thus,
to analyze fluid motion for general applications, we must deal with turbulence.
Although vigorous research has been conducted to help discover the mysteries of
turbulence, it has been called the major unsolved problem of classical physics!
In the following subsections, we will explore some of the most important aspects
of turbulence.

1.3.2 General Properties of Turbulence

e Basic Definition. In 1937, von Karman defined turbulence in a presen-
tation at the Twenty-Fifth Wilbur Wright Memorial Lecture entitled “Tur-
bulence.” He quoted G. 1. Taylor as follows [see von Karmén (1937)]:

“Turbulence is an irvegular motion which in general makes its
appearance in fluids, gaseous or liquid, when they flow past
solid surfaces or even when neighboring sireams of the sarme
Sluid flow past or over one another

As the understanding of turbulence has progressed, researchers have found
the term “irregular motion” to be too imprecise. Simply stated, an irregular
motion is one that is typically aperiodic and that cannot be described as
a straightforward function of time and space coordinates. An irregular
motion might also depend strongly and sensitively upon initial conditions.
The problem with the Taylor-von Karman definition of turbulence lies in
the fact that there are nonturbulent flows that can be described as irregular.

Turbulent motion is indeed irregular in the sense that it can be described by
the laws of probability. Even though instantaneous properties in a turbulent
flow are extremely sensitive to initial conditions, statistical averages of
the instantaneous properties are not. To provide a sharper definition of
turbulence, Hinze (1975) offers the following revised definition:

“Turbulent fluid motion is an irregular condition of flow in
which the various quantities show a random variation with time
and space coordinates, so that statistically distinct average val-
ues can be discerned.”

To complete the definition of turbulence, Bradshaw [cf. Cebeci and Smith
(1974)] adds the statement that turbulence has a wide range of scales.
Time and length scales of turbulence are represented by frequencies and
wavelengths that are revealed by a Fourier analysis of a turbulent-flow
time history.

The irregular nature of turbulence stands in contrast to laminar motion,
so called historically because the fluid was imagined to flow in smooth
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laminae, or layers. In describing turbulence, many researchers refer to
eddying motion, which is a local swirling motion where the vorticity can
often be very intense. Turbulent eddies of a wide range of sizes appear and
give rise to vigorous mixing and effective turbulent stresses (a consequence
of the “mixing” of momentum) that can be enormous compared to laminar
values.

¢ Instability and Nonlinearity. Analysis of solutions to the Navier-Stokes
equation, or more typically to its boundary-layer form, shows that turbu-
lence develops as an instability of laminar flow. To analyze the stability
of laminar flows, classical methods begin by linearizing the equations of
motion. Although linear theories achieve some degree of success in predict-
ing the onset of instabilities that ultimately lead to turbulence, the inherent
nonlinearity of the Navier-Stokes equation precludes a complete analytical
description of the actual transition process, let alone the fully-turbulent
state. For a real (i.e., viscous) fluid, mathematically speaking, the instabil-
ities result mainly? from interaction between the Navier-Stokes equation’s
nonlinear inertial terms and viscous terms. The interaction is very complex
because it is rotational, fully ihree dimensional and time dependent.

As an overview, the nonlinearity of the Navier-Stokes equation leads to
interactions between fluctuations of differing wavelengths and directions.
As discussed below, the wavelengths of the motion usually extend all the
way from a maximum comparable to the width of the flow to a minimum
fixed by viscous dissipation of energy. The main physical process that
spreads the motion over a wide range of wavelengths is vortex stretching.
The turbulence gains energy if the vortex elements are primarily oriented
in a direction in which the mean velocity gradients can stretch them. Most
importantly, wavelengths that are not too small compared to the mean-
flow width interact most strongly with the mean flow. Consequently, the
larger-scale turbulent motion carries most of the energy and is mainly
responsible for the enhanced diffusivity and attending stresses. In turn,
the larger eddigs randomly stretch the vortex elements that comprise the
smaller eddies, cascading energy to them. Energy is dissipated by viscosity
in the shortest wavelengths, although the rate of dissipation of energy is
set by the long-wavelength motion at the start of the cascade. The shortest
wavelengths simply adjust accordingly.

e Statistical Aspects. The time-dependent nature of turbulence also con-
tributes to its intractability. The additional complexity goes beyond the
introduction of an additional dimension. Turbulence is characterized by

2Inviscid instabilities, such as the Kelvin-Helmholtz instability, also play a role.
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random fluctuations thus mandating the use of statistical methods to an-
alyze it. On the one hand, this aspect is not really a problem from the
engineer’s viewpoint. Even if we had a complete time history of a turbu-
lent flow, we would usually integrate the flow properties of interest over
time to extract time averages, or mean values. On the other hand, as
we will see in Chapter 2, time-averaging operations lead to terms in the
equations of motion that cannot be determined a priori.

Turbulence is a Continuum Phenomenon. In principle, we know that the
time-dependent, three-dimensional continuity and Navier-Stokes equations
contain all of the physics of a given turbulent flow. That this is true follows
from the fact that turbulence is a continuum phenomenon. As noted by
Tennekes and Lumley (1983),

"Even the smallest scales occurring in a turbulent flow are
ordinarily far larger than any molecular length scale.”

Nevertheless, the smallest scales of turbulence are still ¢xtremely small
(we will see just how small in the next subsection). They are generally
many orders of magnitude smaller than the largest scales of turbulence, the
latter often being of the same order of magnitude as the dimension of the
object about which the fluid is flowing. Furthermore, the ratio of smallest
to largest scales decreases rapidly as the Reynolds number increases. To
make an accurate numerical simulation (i.e., a fully time-dependent three-
dimensional solution) of a turbulent flow, ali physically relevant scales
must be resolved.

While more and more progress is being made with such simulations, com-
puters of the early twenty-first century have insufficient memory and speed
to solve any turbulent-flow problem of practical interest. To underscore the
magnitude of the problem, Speziale (1985) notes that a numerical simula-
tion of turbulent pipe flow at a Reynolds number of 500,000 would require
a computer 10 million times faster than a Cray Y/MP. While standard per-
sonal computers are comparable in speed to a vintage 1985 Cray Y/MP,
modern mainframe computers are still confined to simple geometries at
low Reynolds numbers. This is true because, as discussed in Chapter 8,
the number of numerical operations in such a computation is proportional
to Re%/*, where Re is a characteristic Reynolds number. However, the
results are very useful in developing and testing approximate methods.

Vortex Stretching. The strongly rotational nature of turbulence goces
hand-in-hand with its three dimensionality. The vorticity in a turbulent
flow is itself three dimensional so that vortex lines in the flow are non-
parallel. The resulting vigorous stretching of vortex lines maintains the
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Figure 1.3: Schematic of large eddies in a turbulent boundary layer. The flow
above the boundary layer has a steady velocity U the eddies move at randomly-
Sfluctuating velocities of the order of a tenth of U. The largest eddy size (€) is
comparable to the boundary-layer thickness (8). The interface and the flow
above the boundary is quite sharp [Corrsin and Kistler (1954)].

ever-present fluctuating vorticity in a turbulent flow. Vortex stretching is
absent in two-dimensional flows so that turbulenice must be three dimen-
sional. This inherent three dimensionality means there are no satisfactory
two-dimensional approximations for determining fine details of turbulent
flows. This is true even when the average motion is two dimensional. The
induced velocity field attending these skewed vortex lines further increases
three dimensionality and, at all but very low Reynolds numbers, the vor-
ticity is drawn out into a tangle of thin tubes or sheets. Therefore, most
of the vorticity in a turbulent flow resides in the smallest eddies.

o Turbulence Scales and the Cascade. Turbulence consists of a continuous
spectrum of scales ranging from largest to smallest, as opposed to a dis-
crete set of scales. In order to visualize a turbulent flow with a spectrum of
scales we often cast the discussion in terms of eddies. As noted above, a
turbulent eddy can be thought of as a local swirling motion whose charac-
teristic dimensi6n is the local turbulence scale (Figure 1.3). Alternatively,
from a more mathematical point of view, we sometimes speak in terms of
wavelengths. When we think in terms of wavelength, we imagine we have
done a Fourier analysis of the fluctuating flow properties.

We observe that eddies overlap in space, large ones carrying smaller ones.
Turbulence features a cascade process whereby, as the turbulence decays,
its kinetic energy transfers from larger eddies to smaller eddies. Ultimately,
the smallest eddics dissipate into heat through the action of molecular
viscosity. Thus, we observe that, like any viscous flow, turbulent flows
are always dissipative.
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Figure 1.4: Laser-induced fluorescence image of an incompressible turbulent
boundary layer. Flow is from left to right and has been visualized with disodium
Sfluorescein dye in water. Reynolds number based on momentum thickness is 700.
[From C. Delo—Used with permission.]

¢ Large Eddies and Turbulent Mixing. An especially striking feature of
a turbulent flow is the way large eddies migrate across the flow, carrying
smaller-scale disturbances with them. The arrival of these large eddies
near the interface between the turbulent region. and nonturbulent fluid dis-
torts the interface into a highly convoluted shape (Figures 1.3 and 1.4).
In addition to migrating across the flow, they have a lifetime so long that
they persist for distances as much as 30 times the width of the flow [Brad-
shaw (1972)]. Hence, the state of a turbulent flow at a given position
depends upon upstream history and cannot be uniquely specified in
terms of the local strain-rate tensor as in laminar flow.

¢ Enhanced Diffusivity. Perhaps the most important feature of turbulence
from an engineering point of view is its enhanced diffusivity. Turbulent
diffusion greatly enhances the transfer of mass, momentum and energy.
Apparent stresses in turbulent flows are often several orders of magnitude
larger than in corresponding laminar flows.

In summary, turbulence is dominated by the large, energy-bearing, eddies.
The large eddies are primarily responsible for the enhanced diffusivity and
stresses observed in turbulent flows. Because large eddies persist for long dis-
tances, the diffusivity and stresses are dependent upon flow history, and cannot
necessarily be expressed as functions of local flow properties. Also, while the
small eddies ultimately dissipate turbulence energy through viscous action, the
rate at which they dissipate is controlled by the rate at which they receive energy
from the largest eddies. These observations must play an important role in the
formulation of any rational turbulence model. As we progress through the fol-
lowing chapters, we will introduce more specific details of turbulence properties
for common flows on an as-needed basis.
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1.3.3 The Smallest Scales of Turbulence

As stated in the preceding subsection, we regard turbulence as a continuum
phenomenon because the smallest scales of turbulence are much larger than any
molecular length scale. We can estimate the magnitude of the smallest scales by
appealing to dimensional analysis, and thereby confirm this claim. Of course, to
establish the relevant dimensional quantities, we must first consider the physics
of turbulence at very small length scales.

We begin by noting that the cascade process present in all turbulent flows
involves a transfer of turbulence Kinetic energy (per unit mass), k, from larger
eddies to smaller eddies. Dissipation of kinetic energy to heat through the action
of molecular viscosity occurs at the scale of the smallest eddies. Because small-
scale motion tends to occur on a short time scale, we can reasonably assume that
such motion is independent of the relatively slow dynamics of the large eddies
and of the mean flow. Hence, the smaller eddies should be in a state where the
rate of receiving energy from the larger eddies is very nearly equal to the rate
at which the smallest eddies dissipate the energy to heat. This is one of the
premises of Kolmogorov’s (1941) universal equilibrium theory. Hence, the
motion at the smallest scales should depend only upon: (a) the rate at which the
larger eddies supply energy, ¢ = —dk/dt, and (b) the kinematic viscosity, v.

Having established ¢ (whose dimensions are length?/time®) and v (whose
dimensions are length?/time) as the appropriate dimensional quantities, it is a
simple matter to form the following length (7), time (7) and velocity (v) scales.

n= (1/3/6)1/4, r=w/e)?,  v=(ve)/* (1.1)

These are the Kolmogorov scales of length, time and velocity.

Figure 1.5: Andrei Nikolaevich Kolmogorov (1903-1987), whose classic 1941
paper on the universal equilibrium theory of turbulence provided an early foun-
dation for an understanding of turbulent fluid motion.
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To appreciate how small the Kolmogorov length scale is, for example, es-
timates based on properties of typical turbulent boundary layers indicate the
following. For an automobile moving at 65 mph, the Kolmogorov length scale
near the driver’s window is about n =~ 1.8 - 10~4 inch. Also, on a day when the
temperature is 68° F, the mean free path of air, i.c., the average distance traveled
by a molecule between collisions, is £, 2 2.5 - 1076 inch. Therefore,

i
Cmfp

~ 72 ‘ (1.2)

so that the Kolmogorov length is indeed much larger than the mean free path of
air, which, in turn, is typically 10 times the molecular diameter.

1.3.4 Spectral Representation and the Kolmogorov -5/3 Law

To provide further insight into the description of turbulence presented above,
it is worthwhile to cast the discussion in a bit more quantitative form. Since
turbulence contains a continuous spectrum of scales, it is often convenient to do
our analysis in terms of the spectral distribution of energy. In general, a spectral
representation is a Fourier decomposition into wavenumbers, «, or, equivalently,
wavelengths, A = 27/x. While this text, by design, makes only modest use of
Fourier-transform methods, there are a few interesting observations we can make
now without considering all of the complexities involved in the mathematics of
Fourier transforms. In the present context, we think of the reciprocal of & as the
eddy size.

If E(x)dx is the turbulence kinetic energy contained between wavenumbers
k and & -+ dk, we can say

k= f:g E(k) dx (1.3)

Recall that k is the kinetic energy per unit mass of the fluctuating turbulent
velocity. Correspondingly, the emergy spectral density or energy spectrum
function, E(x), is related to the Fourier transform of k.

Observing that turbulence is so strongly driven by the large eddies, we expect
E(x) to be a function of a length characteristic of the larger eddies, ¢, and the
mean strain rate, S, which feeds the turbulence through direct interaction of
the mean flow and the large eddies. Additionally, since turbulence is always
dissipative, we expect E'(k) to depend upon v and €. By definition, it also must
depend upon «. For high Reynolds number turbulence, dimensional analysis
suggests, and measurements confirm, that & can be expressed in terms of ¢ and
£ according to [Taylor (1935)]

k3/2

= = k ~ (e£)?/3 (1.4)

|
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Although we have not yet quantified the length scale 4, it is the primary
length scale most turbulence models are based on. In our discussion of two-
point correlations in Chapter 2, an alternative to the spectral representation of
turbulence, we will find that one measure of £ is known as the integral length
scale. In most turbulence-modeling analysis, we assume there is a wide sepa-
ration of scales, which means we implicitly assume ¢ is very large compared to
the Kolmogorov length scale, viz.,

£>n (1.5)

Substituting the estimate of ¢ from Equation (1.4) into the Kolmogorov length
scale, we find

/4
Y, Y, f(k3/2/,€)1 . L1/2p
5 = (1/3/5)1/4 ~ a/d ~ Rey where  Rer =

(1.6)

The quantity Re, is the turbulence Reynolds number. It is based on the
velocity characteristic of the turbulent motions as represented by the square root
of k, the turbulence length scale, ¢, and the kinematic viscosity of the fluid,
v. Thus, the condition ¢ > #n holds provided we have high Reynolds number
turbulence in the sense that

Rer > 1 (1.7)

The existence of a wide separation of scales is a central assumption Kol-
mogorov made as part of his universal equilibrium theory. That is, he hypothe-
sized that for very large Reynolds number, there is a range of eddy sizes between
the largest and smallest for which the cascade process is independent of the
statistics of the energy-containing eddies (so that S and ¢ can be ignored) and
of the direct effects of molecular viscosity (so that v can be ignored). The idea
is that a range of wavenumbers exists in which the energy transferred by inertial
effects dominates, wherefore F(x) depends only upon € and «. On dimensional
grounds, he thus concluded that

1 1
E(k) = Cre?/3x5/3, 7 KKK 5 (1.8)

where Cx is the Kolmogorov constant. Because inertial transfer of energy
dominates, Kolmogorov identified this range of wavenumbers as the inertial
subrange. The existence of the inertial subrange has been verified by many ex-
periments and numerical simulations, although many years passed before defini-
tive data were available to confirm its existence. Figure 1.6 shows a typical
energy spectrum for a turbulent flow.

While Equation (1.8) is indeed consistent with measurements, it is not the
only form that can be deduced from dimensional analysis. Unfortunately, this
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Figure 1.6: Energy spectrum for a turbulent flow—Ilog-log scales.

is one of the shortcomings of dimensional analysis, i.e., the results we obtain
are rarely unique. For example, lacking Kolmogorov’s physical intuition, some
researchiers would retain v as a dimensional quantity upon which E(x) depends
as well as € and . Then, a perfectly valid alternative to Equation (1.8) is

E(x) = /%4 f (rr), n= (/)" (1.9)

where f(rxn) is an undetermined function. This form reveals nothing regarding
the variation of E(x) with x, which is a straightforward illustration of how
dimensional analysis, although helpful, is insufficient to deduce physical laws.

Afzal and Narasimha (1976) use the more-powerful concepts from perturba-
tion theory (Appendix B) to remove this ambiguity and determine the asymptotic
variation of the function f in the inertial subrange. In their analysis, they assume
that for small scales, corresponding to large wavenumbers, the energy spectrum
function is given by Equation (1.9). This represents the inner solution.

Afzal and Narasimha also assume that viscous effects are unimportant for
the largest eddies, and that if the only relevant scales are k and ¢, the energy
spectrum function is given by

E(x) = kfg(xt) (1.10)

where k is the turbulence kinetic energy, ¢ is the large-eddy length scale discussed
above, and g(x¢) is a second undetermined function. Although we omit the
details here for the sake of brevity, we can exclude explicit dependence of F(x)
on strain rate, S, since it is proportional to k'/2/¢ for high Reynolds number
boundary layers. This represents the outer solution.



14 CHAPTER I. INTRODUCTION

Finally, they match the two solutions, which means they insist that the inner
and outer solutions are identical when 7 is small and «/ is large, i.e.,

e/ 45 f(kn) = kig(kl) for  kp<l and kf>1 (1.11)
In words, this matching operation assumes that

“Between the viscous and the energetic scales in any turbulent flow
exists an overlap domain over which the solutions [characterizing]
the flow in the two corresponding limits must match as Reynolds
number tends to infinity.”

The qualification regarding Reynolds number means it must be large enough to
permit a wide separation of scales so that £ > 1. To complete the matching
operation, Afzal and Narasimha proceed as follows. In the spirit of singular-
perturbation theory, the matching operation presumes that the functional forms
of the inner and outer solutions are the same in the overlap region. This is a
much stronger condition than requiring the two solutions to have the same value
at a given point. Hence, if their functional forms are the same, so are their first
derivatives. Differentiating both sides of Equation (1.11) with respect to x gives

net/* 54 f (km) = kg’ (k€) for  kn< 1 and kf>> 1 (1.12)

Then, noting that the Kolmogorov length scale is 7 = v3/4¢~1/% while Equa-
tion (1.4) tells us k = €2/3¢2/3, we can rewrite Equation (1.12) as

V2 (k) = 228 3¢ (k) for  kn<< 1 and k€>> 1 (1.13)

Finally, multiplying through by £3/%¢~2/3 and using the fact that v2¢—2/3 = 5)8/3,
we arrive at the following equation.

(kM3 f (k) = (k)®P¢'(k€) for wn<l and Kt > 1 (1.14)

If there is a wide separation of scales, we can regard <7 and s/ as separate inde-
pendent variables. Thus, Equation (1.14) says that a function of one independent
variable, k), is equal to a function of a different independent variable, x¢. This
can be true only if both functions tend to a constant value in the indicated limits.
Thus, in the Afzal-Narasimha overlap domain, which is the inertial subrange,

(kn)/3 f'(kn) = constant ==  f(kn) = Cx(kn) %3 (1.15)

where (s 1s a constant. Combining Equations (1.9) and (1.15), we again arrive
at the Kolmogorov inertial-subrange relation, viz.,

E(k) = Cye?/3575/3 (1.16)

which is identical to Equation (1.8).
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Although the Kolmogorov —5/3 law is of minimal use in conventional turbu-
lence models, it is of central importance in work on Direct Numerical Simulation
(DNS), Large Eddy Simulation (LES), and Detached Eddy Simulation (DES),
which we discuss in Chapter 8. The Kolmogorov —5/3 law is so well es-
tablished that, as noted by Rogallo and Moin (1984), theoretical or numerical
predictions are regarded with skepticism if they fail to reproduce it. Its standing
is as important as the law of the wall, which we discuss in the next subsection.

L

1.3.5 The Law of the Wall

The law of the wall is one of the most famous empirically-determined rela-
tionships in turbulent flows near solid boundaries. Measurements show that, for
both internal and external flows, the streamwise velocity in the flow near the wall
varies logarithmically with distance from the surface. This behavior is known
as the Jaw of the wall. In this section, we use both dimensional analysis and
matching arguments to infer this logarithmic variation.

Observation of high Reynolds number turbulent boundary layers reveals a
useful, approximate description of the near-surface turbulence statistics. We find
that effects of the fluid’s inertia and the pressure gradient are small near the
surface. Consequently, the statistics of the flow near the surface in a turbulent
boundary layer are established by two primary mechanisms. The first is the rate
at which momentum is transferred to the surface, per unit area per unit time,
which is equal to the local shear stress, 7. The second is molecular diffusion of
momentum, which plays an important role very close to the surface. Observations
also indicate that the details of the eddies farther from the surface are of littie
importance to the near-wall flow statistics.

The validity of this approximate description improves with decreasing y/4,
where & is the boundary-layer thickness. This is true because the ratio of typical
eddy size far from the surface to eddy size close to the surface increases as y/4
decreases. In other words, since 4 increases with Reynolds number, we find
a wide separation of scales at high Reynolds numbers. The astute reader will
note interesting parallels between this description of the turbulent boundary layer
and the general description of turbulence presented in Subsection 1.3.2. Note,
however, that the analogy is mathematical rather than physical. This analogy is
discussed, for example, by Mellor (1972) and by Afzal and Narasimha (1976).

Although 7 varies near the surface, the variation with distance from the
surface, y, is fairly slow. Hence, for the dimensional-analysis arguments to
follow, we can use the surface shear stress, 7,,, in place of the local shear stress.
Also, we denote the molecular viscosity of the fluid by x. Since turbulence
behaves the same in gases as in liquids, it is reasonable to begin with 7, /p and
kinematic viscosity, v = 1/p, as our primary dimensional quantities, effectively
eliminating fluid density, p, as a primary dimensional quantity.
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Since the dimensions of the quantity 7,,/p are length?/time?, while those of
v are length®/time, clearly we can derive a velocity scale, .., defined by

TRE R (1.17)
o

and a length scale, v/u,. The quantity u, is known as the friction velocity,
and is a velocity scale representative of velocities close to a solid boundary. If
we now postulate that the mean velocity gradient, 3U /0y, can be correlated as
a function of w,, v/u, and y, dimensional analysis yields

ou  wu,
oy —y—F(ur’y/V) (1.18)

where F'(u,y/v) is presumed to be a universal function. Examination of exper-
imental data for a wide range of boundary layers [see, for example, Coles and
Hirst (1969)], indicates that, as a good leading-order approximation,

1
F(ury/v) — ~ s ury/v — oo (1.19)

where x is Karman’s constant. The function F(u,y/v) approaching a constant
value is consistent with the notion that viscous effects cease to matter far from
the surface, i.e., if it varies with u,y/v it would thus depend upon v. Integrating
over y, we arrive at the famous law of the wall, viz,,

U 1w,y

— = —fn
Uy w v

+C (1.20)

where C' is a dimensionless integration constant. Correlation of measurements
indicate C' a2 5.0 for smooth surfaces and x =~ 0.41 for smooth and rough
surfaces [see Kline et al. (1969)].

Figure 1.7 shows a typical velocity profile for a turbulent boundary layer.
The graph displays the dimensionless velocity, » T, and distance, y*, defined as:

-
' U Ur]
e and y* =Y

— 2
o > (1.21)

The velocity profile matches the law of the wall for values of y* in excess of
about 30. As Reynolds number increases, the maximum value of y* at which
the law of the wall closely matches the actual velocity increases.

Observe that three distinct regions are discernible, viz., the viscous sublayer,
the log layer and the defect layer. By definition, the log layer is the portion
of the boundary layer where the sublayer and defect layer merge and the law of
the wall accurately represents the velocity. It is not a distinct layer. Rather, it is
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Figure 1.7: Typical velocity profile for a turbulent boundary layer. -

an overlap region between the inner and outer parts of the boundary layer. As
we will see in the following discussion, originally presented by Millikan (1938),
it is an overlap domain similar to that of the Afzal-Narasimha analysis of the
preceding subsection.

Assuming the velocity in the viscous sublayer should depend only upon u.,
v and y, we expect to have a relationship of the form

U=uf (y+) (1.22)

where f(y*) is a dimensionless function. This general functional form is often
referred to as the law of the wall, and Equation (1.20) is simply a more explicit
form. By contrast, in the defect layer, numerous experimenters including Darcy,
von Karman and Clauser found that velocity data correlate reasonably well with
the so-called velocity-defect law or Clauser defect Iaw:

PRES

U=U, - UTQ(W)& 7 (1.23)
where U, is the velocity at the boundary-layer edge and g(7) is another dimen-
sionless function. The quantity A is a thickness characteristic of the outer portion
of the boundary layer.
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Hence, we have an inner length scale v/u, and an outer length scale A.
Millikan’s postulate is that if a wide separation of scales exists in the sense that

L &K (1.24)

Ur

then an overlap domain exists such that
urf (yt) =Ue —u,g(n) for 3yt >1 and n<1 (1.25)
We can complete the matching without explicit knowledge of the functions f

and g by differentiating Equation (1.25) with respect to y. Hence,

2
%Cf" (y"'):—%g’(n) for y*>1 and n<1 (1.26)

Then, multiplying through by v/u.., we find
vy f (y7) =-ng'(n) for y">1 and n<1 (1.27)

Thus, since a wide separation of scales means we can regard y+ and 7 as
independent variables, clearly the only way a function of y* can be equal to a
function of 7 is for both to be equal to a constant. Therefore,

1 1
y* ' (y*) = constant = ~ = flyt) = ;fnzﬁ +C (1.28)

which, when combined with Equation (1.22), yields Equation (1.20).

As noted earlier, the value of C for a perfectly-smooth surface is C ~ 5.0.
For surfaces with roughness elements of average height k,, the law of the wall
still holds, although C is a function of k,. Figure 1.8 illustrates how C varies
as a function of the dimensionless roughness height given by

(1.29)

As shown, as k, increases, the value of C decreases. For large roughness height,
measurements of Nikuradse [Schlichting-Gersten (1999)] show that

1 |
C — 8.0— Efnkj, k501 (1.30)

Substituting this value of C' into the law of the wall as represented in Equa-
tion (1.20) yields:

v - lgn (k‘ﬂ) + 8.0  (completely-rough wall) (1.31)

Uy K s
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Figure 1.8: Constant in the law of the wall, C, as a funciion of surface roughness;
o based on measurements of Nikuradse [Schlichting-Gersten (1999)].

The absence of viscosity in this equation is consistent with the notion that the
surface “shear stress” is due to pressure drag on the roughness elements.

The defect layer lies between the log layer and the edge of the boundary
layer. The velocity asymptotes to the law of the wall as y/d — 0, and makes
a noticeable departure from logarithmic behavior approaching the freestream.
Again, from correlation of measurements, the velocity behaves as

1 o211
s —fny++C+——~—sin2(zr-y\ (1.32)
K K 290
where II is Coles’ wake-strength parameter [Coles and Hirst (1969)] and §
is boundary-layer thickness. It varies with pressure gradient, and for constant
pressure, correlation of measurements suggests IT =~ 0.6. Equation (1.32) is often

referred to as the composite law of the wall and law of the wake profile.

As demonstrated by Clauser (1956) experimentally and justified with per-
turbation methods by others analytically {see, for example, Kevorkian and Cole
(1981), Van Dyke (1975) or Wilcox (1995a)], the velocity in the defect layer
varies in a self-similar manner provided the equilibrium parameter defined by

_ 48 ap

Br = (1.33)

Tw AT

is constant. The quantities ™ and P in Equation (1.33) are displacement thick-
ness and mean pressure, respectively. As demonstrated by Wilcox (1993b), even
when 3, 1s not constant, if it is not changing too rapidly, the value for II is close
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Figure 1.9: Coles’ wake-strength parameter, 11, as a function of pressure gradi-
ent; o from data of Coles uand Hirst (1969); e Skare and Krogstad (1994).

to the value corresponding to the local value of G;. Figure 1.9 shows how II
varies with pressure gradient for the so-called equilibrium turbulent boundary
layer, i.e., a boundary layer for which 51 is constant.

1.3.6 Power Laws

Often, as an approximation, turbulent boundary-layer profiles are represented by
a power-law relationship. That is, we sometimes say

U% = (%)I/n (1.34)

where n is typically an integer between 6 and 8. A value of n = 7, first suggested
by Prandtl [Schlichting-Gersten (1999)], yields a good approximation at high
Reynolds number for the flat-plate boundary layer. Figure 1.10 compares a 1/7
power-law profile with measurements. The agreement between measured values
for a plate-length Reynolds number of Re, = 1.09 - 107 and the approximate
profile is surprisingly good with differences everywhere less than 3%.

Recently, Barenblatt and others [see, for example, Barenblatt (1991), George,
Knecht and Castillo (1992), Barenblatt (1993) and Barenblatt, Chorin and Pros-
tokishin (1997)] have challenged the validity of the law of the wall. Their
contention is that a power-law variation of the velocity in the inner layer better
correlates pipe-flow measurements and represents a more realistic description of
the turbulence in a boundary layer.

The critical assumption that Barenblatt et al. challenge is the existence of a
wide separation of scales, i.e., large 6 /(v /u,). They maintain that the turbulence
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Figure 1.10: Power-law velocity profile;, — U/U. = (y/8)Y/7; o Wieghardt
data at Re, == 1.09 - 107 [Coles and Hirst (1969)].

in the overlap region is Reynolds-number dependent. If this is true, the law of the
wall and defect-law Equations {1.22) and (1.23), respectively, must be replaced
by .

U=u,f(y",Re) and U = U, — u,g(n, Re) (1.35)

where Re is an appropriate Reynolds number, f and § are universal functions,
and u, is a velocity scale that is not necessarily equal to u,. Equivalently, the
Barenblatt ¢t al. hypothesis replaces Equation (1.18) by
oUu  wu,
Oy Yy
where the universal function ®(y*, Re) appears in place of F(y™).

In the Millikan argument, the assumption of a wide separation of scales im-
plies that the boundary layer possesses self-similar solutions both in the defect
layer and the sublayer, in the sense that a similarity variable, e.g., y* = u,y/v
and 7 = y/ A, exists in each region. The assumption that we can regard y* and
n as distinct independent variables in the overlap region is described as a condi-
tion of complete similarity. By contrast, the Barenblatt hypothesis corresponds
to incomplete similarity. Barenblatt (1979) discusses the distinction between
complete and incomplete similarity in detail.

Under the assumption of incomplete similarity, there is no a priori reason for
the function ®(y*, Re) to approach a constant value in the limit ¥+ — oo, even
when Re — oo. Rather, Barenblatt et al. argue that for large y,

® (y*, Re) = A(y™)" (1.37)

® (y*, Re) (1.36)

where the coefficient A and the exponent « are presumed to be functions of
Reynolds number. In the nomenclature of Barenblatt, Chorin and Prostokishin
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(1997), they assume “incomplete similarity in the parameter [y*] and no simi-
larity in the parameter Re.” Combining Equations (1.36) and (1.37) yields

6U+ a—1 A s
g = AW) = Ut =2 (") (1.38)

Based primarily on experimental data for pipe flow gathered by Nikuradse in
the 1930’s [Schlichting-Gersten (1999)], Barenblatt, Chorin and Prostokishin
conclude that

1.5

A=057T7nRe+ 2.50 and a =
fnRe

(1.39)

where Re is Reynolds number based on average velocity and pipe diameter.

To test the Barenblatt et al. alternative to the law of the wall, Zagarola, Perry
and Smits (1997) have performed an analysis based on more recent experiments
by Zagarola (1996). The advantage of these data lies in the much wider range
of Reynolds numbers considered, especially large values, relative to those con-
sidered by Nikuradse. They conclude that the classical law of the wall provides
closer correlation with measurements than the power law given by combining
Equations (1.38) and (1.39), although they recommend a somewhat larger value
for x of 0.44.

To remove the possibility that the 60-year-old data of Nikuradse provide a
poor correlation of A and «, Zagarola. Perry and Smits determine their values
from the Zagarola data, concluding that

_1.085  6.535

A = 0.7053nRe +0.3055 and o — inke T (/nRe)?

(1.40)

Even with these presumably more-accurate values, the logarithmic law of the wall
still provides closer correlation with measurements than the power-law form.
This prompted Barenblatt, Chorin and Prostokishin (1997) — with a ques-
tionable argument — to demonstrate that at high Reynolds number the Zagarola
experiments have significant surface roughness. Zagarola, Perry and Smits (1997)
reject this possibility in stating that “the pipe surface was shown to be smooth.”
Buschmann and Gad-el-Hak (2003) have offered what may be the final chap-
ter of the power-law saga. They have performed an extensive analysis of mean-
velocity profiles to determine if the power-law or the classical law-of-the-wall
formulation provides optimum correlation of measurements. Their profiles in-
clude five sets of measurements and one data set from a Direct Numerical Sim-
ulation. After a detailed statistical analysis, they conclude that “the examined
data do not indicate any statistically significant preference toward either law.”
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1.4 A Brief History of Turbulence Modeling

The primary emphasis in this book is upon the time-averaged Navier-Stokes
equation. The origin of this approach dates back to the end of the nineteenth
century when Reynolds (1895) published results of his research on turbulence.
His pioneering work proved to have such profound importance for all future
developments that we refer to the standard time-averaging process as one type
of Reynolds averaging. '

The earliest attempts at developing a mathematical description of turbulent
stresses sought to mimic the molecular gradient-diffusion process. In this spirit,
Boussinesq (1877) introduced the concept of a so-called eddy viscosity. As
with Reynolds, Boussinesq has been immortalized in turbulence literature. The
Boussinesq eddy-viscosity approximation is so widely known that few authors
find a need to reference his criginal paper.

Neither Reynolds nor Boussinesq attempted a solution of the Reynolds-
averaged Navier-Stokes equation in any systematic manner. Much of the physics
of viscous flows was a mystery in the nineteenth century, and further progress
awaited Prandtl’s discovery of the boundary layer in 1904. Focusing upon turbu-
lent flows, Prandtl {1925) introduced the mixing length (an analog of the mean-
free path of a gas) and a straightforward prescription for computing the eddy
viscosity in terms of the mixing length. The mixing-length hypothesis, closely
related to the eddy-viscosity concept, formed the basis of virtually all turbulence-
modeling research for the next twenty years. lmportant early contributions were
made by several researchers, most notably by von Karman (1930). In modern
terminology, we refer to a model based on the mixing-length hypothesis as an
algebraic model or a zero-equation model of turbulence. By definition, an
n-equation model signifies a model that requires solution of n additional differ-
ential transport equations in addition to those expressing conservation of mass,
momentum and energy for the mean flow.

To improve the ability to predict properties of turbulent flows and to develop
a more realistic mathematical description of the turbulent stresses, Prandtl (1945)
postulated a model in which the eddy viscosity depends upon the kinetic energy of
the turbulent fluctuations, £. He proposed a modeled partial-differential equation
approximating the exact equation for £. This improvement, on a conceptual level,
takes account of the fact that the turbulent stresses, and thus the eddy viscosity,
are affected by where the flow has been, i.e., upon flow history. Thus was born
the concept of the so-called one-equation model of turbulence.

While having an eddy viscosity that depends upon flow history provides a
more physically realistic model, the need to specify a turbulence length scale
remains. That is, on dimensional grounds, viscosity has dimensions of velocity
times length. Since the length scale can be thought of as a characteristic eddy
size and since such scales are different for each flow, turbulence models that do
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not provide a length scale are incomplete. That is, we must know something
about the flow, other than initial and boundary conditions, in advance in order
to obtain a solution. Incomplete models are not without merit and, in fact, have
proven to be of great value in many engineering applications.

To elaborate a bit further, an incomplete model generally defines a turbulence
length scale in a prescribed manner from the mean flow, e.g., the displacement
thickness, 6*, for an attached boundary layer. However, a different length scale
in this example would be needed when the boundary layer separates since §*
may be negative. Yet another length might be needed for free shear flows,
etc. In essence, incomplete models usually define quantities that may vary more
simply or more slowly than the Reynolds stresses (e.g., eddy viscosity and mixing
length). Presumably, such quantities would prove to be easier to correlate than
the actual stresses.

A particularly desirable type of turbulence model would be one that can be
applied to a given turbulent flow by prescribing at most the appropriate boundary
and/or initial conditions. Ideally, no advance knowledge of any property of the
turbulence should be required to obtain a solution. We define such a model as
being complete. Note that our definition implies nothing regarding the accuracy
or universality of the model, only that it can be used to determine a flow with
no prior knowledge of any flow details.

Kolmogorov (1942) introduced the first complete model of turbulence. In
addition to having a modeled equation for £, he introduced a second parameter w
that he referred to as “the rate of dissipation of energy in unit volume and time.”
The reciprocal of w serves as a turbulence time scale, while k'/2/w serves as the
analog of the mixing length and kw is the analog of the dissipation rate, €. In
this model, known as a k-w model, w satisfies a differential equation somewhat
similar to the equation for k. The model is thus termed a two-equation model
of turbulence. While this model offered great promise, it went with virtually
no applications for the next quarter century because of the unavailability of
computers to solve its nonlinear differential equations.

Chou (1945) and Rotta (1951) laid the foundation for turbulence models that
obviate use of the Boussinesq approximation. Rotta devised a plausible model
for the differential equation governing evolution of the tensor that represents
the turbulent stresses, i.c., the Reynolds-stress tensor. Such models are most
appropriately described as stress-transport models. Many authors refer to this
approach as second-order closure or second-moment closure. The primary
conceptual advantage of a stress-transport model is the natural manner in which
nonlocal and history effects are incorporated.

Although quantitative accuracy often remains difficult to achieve, such mod-
els automatically accommodate complicating effects such as sudden changes in
strain rate, streamline curvature, rigid-body rotation, and body forces. This stands
in distinct contrast to eddy-viscosity models that account for these effects only if
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empirical terms are added. For a three-dimensional flow, a stress-transport model
introduces seven equations, one for the turbulence (length or equivalent) scale
and six for the components of the Reynolds-stress tensor. As with Kolmogorov’s
k-w model, stress-transport models awaited adequate computer resources.

Thus, by the early 1950’s, four main categories of turbulence models had
evolved, viz.,

1. Algebraic (Zero-Equation) Models
2. One-Equation Models
3. Two-Equation Models

4. Stress-Transport Models

With the coming of the age of computers since the 1960’s, further devel-
opment of all four classes of turbulence models has occurred. The following
overview lists a few of the most important modern developments for each of the
four classes.

Algebraic Models. Van Driest (1956) devised a viscous damping correction
for the mixing-length model that is included in virtually all algebraic models
in use today. Cebeci and Smith (1974) refined the eddy-viscosity/mixing-length
model to a point that it can be used with great confidence for most attached
boundary layers. To remove some of the difficulties in defining the turbulence
length scale from the shear-layer thickness, Baldwin and Lomax (1978) proposed
an alternative algebraic model that enjoyed widespread use for many years.

Figure 1.11: 4. M. O. Smith (1911-1997), whose pioneering work in CFD and
turbulence modeling were routine accomplishments in a brilliant career.

One-Equation Models. Of the four types of turbulence models described
above, the one-equation model has enjoyed the least popularity and success.
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Perhaps the most successful early model of this type was formulated by Bradshaw,
Ferriss and Atwell (1967). In the 1968 Stanford Conference on Computation of
Turbulent Boundary Layers [Coles and Hirst (1969)] the best turbulence models
of the day were tested against the best experimental data of the day. In this
author’s opinion, of all the models used, the Bradshaw-Ferriss-Atwell model
most faithfully reproduced measured flow properties.

There has been renewed interest in one-equation models based on a postulated
equation for eddy viscosity [c.f. Sekundov (1971), Baldwin and Barth (1990),
Goldberg (1991), Spalart and Allmaras (1992) and Menter (1994)]. This work
has been motivated primarily by the ease with which such model equations can be
solved numerically, relative to two-equation models and stress-transport models.
Of these recent one-equation models, that of Spalart and Allmaras appears to be
the most accurate for practical turbulent-flow applications.

Two-Equation Models. While Kolmogorov’s k-w model was the first of this
type, it remained in obscurity until the coming of the computer. By far the most
extensive work on two-equation models has been done by Launder and Spalding
(1972) and a continuing succession of students and colleagues. Launder’s k-¢
model is as well known as the mixing-length model and, until the last decade
of the twentieth century, was the most widely used two-equation model. Even
the model’s demonstrable inadequacy for flows with adverse pressure gradient
[c.f. Rodi and Scheuerer (1986), Wilcox (1988a, 1993b) and Henkes (1998a)]
initially did little to discourage its widespread use.

With no prior knowledge of Kolmogorov’s work, Saffman (1970) formulated
a k-w model that enjoys advantages over the k-¢ model, especially for integrating
through the viscous sublayer and for predicting effects of adverse pressure gra-
dient. Wilcox and Alber (1972), Saffman and Wilcox (1974), Wilcox and Traci
(1976), Wilcox and Rubesin (1980), Wilcox (1988a, 1998), Menter (1992a), Kok
(2000) and Hellsten (2005), for example, have pursued further development and
application of k-w models. This text, in Chapter 4, introduces a new version
of the k-w model, a significant improvement over that described in the first and
second editions of this book. Lakshminarayana {1986) observed that k-w models
had become the second most widely used type of two-equation turbulence model
even before the k-¢ model’s numerous inadequacies were widely known.

Stress-Transport Models. By the 1970’s, sufficient computer resources
became available to permit serious development of this class of model. The
most noteworthy efforts were those of Donaldson [Donaldson and Rosenbaum
(1968)}, Daly and Harlow (1970) and Launder, Reece and Rodi (1975). The
latter evolved as the baseline stress-transport model despite its dependence on
essentially the same flawed equation for € that plagues the k-¢ model.

Chapter 6 describes a stress-transport model based on the w equation that
greatly improves computational accuracy over that of the Launder-Reece-Rodi
model. More recent contributions by Lumley (1978), Speziale (1985, 1987a,
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1991) and Reynolds (1987) have added mathematical rigor to the closure process.
However, because of the large number of equations and complexity involved in
stress-transport models, they have thus far found their way into a relatively small
number of applications compared to algebraic and two-equation models.

This book investigates all four classes of turbulence models. The primary
emphasis is upon examining the underlying physical foundation and upon de-
veloping the mathematical tools for analyzing and testing the models. The text
is not intended to be a catalog of all turbulence models. Rather, the text
approaches each class of models in a generic sense. Detailed information is
provided for models that have stood the test of time; additionally, references are
given for most models.

As a concluding comment, turbulence models have been created that fall
beyond the bounds of the four categories cited above. This is true because
model developers have tried unconventional approaches in an attempt to remove
deficiencies of existing models of the four basic classes. Given the erratic track
record of most turbulence models, new ideas are always welcome.
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Problems

1.1 To appreciate why laminar flow is of minimal importance in many engineering ap-
plications, compute the percent of the vehicle over which laminar flow exists for the
following situations. In each case, let x¢ denote arclength measured from the leading
stagnation point of the vehicle or wing and assume transition occurs at a (very high)
Reynolds number of Re,, = 5 - 10°.

(a) A 14-foot automobile moving at 75 mph (v = 1.62 - 10™* ft%/sec).

(b} A l4-foot automobile moving at 25 mph (v = 1.62 - 10~ fi%/sec).

(c¢) A small aircraft with an average wing chord length of 8 feet moving at 150 mph
(v = 1.58 - 10~ fi%/sec).

(d) A Boeing 747 with an average wing chord length of 30 feet moving at 550 mph
(v = 4.25-10~* fi%/sec).

1.2 To appreciate why laminar flow is of minimal importance in many engineering ap-
plications, compute the percent of the vehicle over which laminar flow exists for the
following situations. In each case, let z; denote arclength measured from the leading
stagnation point of the vehicle or wing and assume transition occurs at a (very high)
Reynolds number of Re,, = 2 - 10%. Note that 1 knot = 0.514 m/sec.

(a) A 10-meter sailboat moving at 3.5 knots (v = 1.00 - 10~% m?/sec).
(b) A 10-meter sailboat moving at 7.7 knots (v = 1.00 - 10~° m?/sec).
(c) A 30-meter yacht moving at 12 knots (v = 0.90 - 107% m?/sec).

(d) A 100-meter tanker moving at 16 knots (¢ = 1.50 - 107% m?/sec).

1.3 Using dimensional analysis, deduce the Kolmogorov length, time and velocity scales
defined in Equation (1.1).

1.4 Using dimensiona! analysis, deduce the Kolmogorov —5/3 law, Equation (1.8), be-
ginning with the assumption that the energy spectral density, F(x), depends only upon
wavenumber, x, and dissipation rate, e.

1.5 As noted in Subsection 1.3.3, for an automobile moving at 65 mph, the Kolmogorov
length scale near the driver’s window is 7 &~ 2 - 107 % inch. If v = 1.60 - 10™* fi%/sec,
what are the Kolmogorov time and velocity scales? Repeat the computations for a point
farther from the surface where n = 0.02 inch.

1.6 The viscous sublayer of a turbulent boundary layer extends from the surface up to
yT = 30. To appreciate how thin this layer is, consider the boundary layer on the side
of your freshly washed and waxed (and therefore smooth) automobile. When you are
moving at I/ = 55 mph, the skin friction coefficient, ¢, just below your rear-view mirror

is 0.0028. Using the fact that
U/'U-'T = 1/ 2/Cf

estimate the sublayer thickness and compare it to the diameter of the head of a pin, which
is dpin = 0.05 inch. Assume v = 1.68 - 10™% ft%/sec.
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1.7 The viscous sublayer of a turbulent boundary layer extends from the surface up to
y+ =~ 30. To appreciate how thin this layer is, consider the boundary layer on the hull of
a large tanker moving at speed U. Assuming the boundary layer has negligible pressure
gradient over most of the hull, you can assume the boundary-layer thickness, §, and skin
friction, cf, are

§ ~ 0.37zRe;/®

cs 5 0.0576Re; */®

(a) Noting that U /u., = \/2/cy, verify that the sublayer thickness, 8,; = 30v/u-, is
given by

478
Ost % ——— 0
7 R

(b) Compute d,; at points on the hull where Re, = 2.8-107 and § = 2.5 in, and where
Re, = 5.0-10% and 6 = 25 in. Express your answer in terms of hs /84, to the
nearest integer, where hs = 1/10 inch is the height of the symbol J,; on this page.

1.8 A surface is called hydraulically smooth when the surface roughness height, k., is

such that
urks

ki = < b

where u- is friction velocity and v is kinematic viscosity. Consider the flow of air over a
flat plate of length 1 m. For the following plate materials, what is the maximum freestream
velocity, U, at which the surface will be hydraulically smooth? Assume skin friction is

given by ¢ =~ 0.0576Re /° and that v = 1.51 - 10~° m?/sec.

| Plate Material | ks (mm) |
Copper 0.0015
Galvanized iron 0.15
Concrete 1.50

1.9 A surface is called completely rough when the surface roughness height, k., is such

that
Ur kg

kt=—"=>70
i
where u. is friction velocity and v is kinematic viscosity. Consider the flow of water over
a flat plate. For the following plate materials, what is the minimum freestream velocity,
U, at which the surface will be completely rough at z = 5 t? Assume skin friction is
given by ¢y =~ 0.0576Re; */° and that v = 1.08 - 10~° fi*/sec.

LPlate Material ] ks (ff) |
Steel 1.5-10—
Cast iron 85104
Concrete 501072
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1.10 The atmospheric boundary layer over a smooth beach is a very large scale turbulent,
flat-plate boundary layer, and its boundary-layer thickness and skin friction are accurately
represented by

8§~ 0.37zRe; '’ and  ¢f &~ 0.0576Re; '/®

Suppose you are enjoying a day on the beach and the temperature is 85°F so that the
kinematic molecular viscosity is v = 1.72-10* ft*/sec. The atmospheric boundary layer
is 250 ft thick and the velocity at that altitude is 20 mph. Your forehead is about 6 inches
above the ground level. Is your forehead in the sublayer, log layer or defect layer? What
is the wind velocity over your forehead?

e s oo
R ;

Preoblems 1.10, 1.11

1.11 Sunbathers are enjoying a day on the beach. They are lying on the sand with
essentially uniform spacing, and their bodies resemble sandgrain roughness elements of
height k, = 30 cm to the atmospheric boundary layer. One of the sunbathers is an
eager graduate student who decides to use what he learned in this chapter in a practical
situation. First, just downstream of a cluster of sunbathers, he measures the wind velocity
at head level, y1 ~ 1.8 m, and finds u; = 2.9 m/sec. He then climbs a palm tree of
height y2 =~ 5.0 m and observes a wind velocity of uz = 3.5 m/sec. Assuming the
beach surface is a completely-rough surface, what is the friction velocity according to his
measurements? To verify the hypothesis that the surface is completely rough, check to
see if u,ks /v > 70. Assume that v = 1.60 - 107° m?/sec.

1.12 Combining Equations (1.25) and (1.28), verify that the function g(n) must be

1
g(n) =A— —tny)

where A is a function of U., u-, A, v, x and C. To have a wide separation of scales,
A must be a_constant, ie., it must be independent of Reynolds number. Noting that
Ue/ur = 1/2/cy and using Clauser’s thickness, A = U.8" /u,, where §* is displace-
ment thickness, determine the skin friction, ¢y, as a function of A, C and Res» = U.6* /v.

1.13 For a turbulent boundary layer, the velocity is given by u* = y* in the sublayer
and by the law of the wall, Equations (1.20) and (1.21), in the log layer. Determine by
trial and error (or Newton’s iterations if you are familiar with the method) the value of
y* (to the nearest 1/10) at which the sublayer and log-layer velocity profiles are equal.

1.14 We would like to determine the values of Reynolds number, Re, for which the
Barenblatt exponent, «, is 1/6, 1/7 and 1/8. Compare the values inferred by using the
Barenblatt correlation, Equation (1.39), and the Zagarola correlation, Equation (1.40).
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1.15 According to Equation (1.32), at the boundary-layer edge we have

E{'z-zlf?nu—‘rg-}-C'+E
K v K

Ur

We would like to determine how skin friction, c¢; = 2u? /U2, is affected by changes in
the quantities C' and II.

(a) Assuming only u, varies with C, verify that

1des 2k+/cr/2

cr dC B K+ +/cp/2

(b) Assuming cy = 0.002, based on the result of Part (a), how much of a change in
C is required to give a 3% change in c;? Be sure to include a sign in your result.

(c) Derive a similar result for (dcy/dIl)/cy and determine the approximate change in
cy for a decrease in IT of 1.0. Assume ¢y = 0.002.
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Chapter 2

The Closure Problem

Because turbulence consists of random fluctuations of the various flow properties,
we use a statistical approach. Our purposes are best served by the procedure
introduced by Reynolds (1895) in which all quantities are expressed as the sum of
mean and fluctuating parts. We then form the mean of the continuity and Navier-
Stokes equations term by term. As we will see in this chapter, the nonlinearity of
the Navier-Stokes equation leads to the appearance of momentum fluxes that act
as apparent stresses throughout the flow. These momentum fluxes are unknown
a priori. We then derive equations for these stresses, which include additional
unknown quantities. This illustrates the issue of closure, i.e., establishing a
sufficient number of equations for all of the unknowns. The chapter concludes
with a discussion of turbulence scales and more-advanced statistical concepts.
To illustrate the nature of turbulence statistics, it is instructive to observe
how the velocity field behaves for a turbulent flow. Figure 2.1 shows measured
velocity profiles, u(y), for a flat-plate boundary layer. Plotted with a series

LI

Figure 2.1: Instantaneous boundary-layer velocity profiles at the same distance
SJrom the leading edge of a flat plate at 17 different instants. The profiles are
shown with a series of staggered origins. [From Cebeci and Smith (1974) —
Copyright (© Academic Press 1974 — Used with permission.]

33
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of staggered origins, all 17 profiles correspond to the same distance from the
plate leading edge, and have been measured at several different times using the
hydrogen-bubble technique. While the experimental method is a bit crude, e.g.,
the profiles appear incorrectly multivalued! in a few locations, the measured
velocity profiles correctly show that the velocity profile changes shape rather
dramatically from one instant to the next.

Figure 2.2(a) displays all of the velocity profiles, only this time with a com-
mon origin. Clearly, there is a large scatter in the value of the velocity at each
distance y from the surface. Figure 2.2(b) shows a standard mean velocity profile
for a boundary layer at the same Reynolds number. Comparison of the profiles
in (a) and (b) clearly illustrates that the turbulent fluctuations in the velocity
cannot be regarded as a small perturbation relative to the mean value. In the
following sections, we explore the classical statistical methods used to analyze
this inherently complex behavior.

.

(a) All profiles —~ one origin )] Average profile

Figure 2.2: Instantaneous and average boundary-layer velocity profiles at the
same distance from the leading edge of a flat plate. [From Cebeci and Smith
(1974) — Copyright (© Academic Press 1974 — Used with permission.j

2.1 Reynolds Averaging

We begin with the averaging concepts introduced by Reynolds (1895). In general,
Reynolds averaging assumes a variety of forms involving either an integral or a
summation. The three forms most pertinent in turbulence-model research are the
time average, the spatial average and the ensemble average: the general term
used to describe these averaging processes is “mean.”

Time averaging is appropriate for stationary turbulence, i.e., a turbulent
flow that, on the average, does not vary with time, such as flow in a pipe driven

IThe hydrogen-bubble technique cannot isolate the velocity component parallel to the surface, so
that the profiles include effects of vertical motion as well, and the apparently multivalued profiles
are really a kind of velocity-vector plot. This also illustrates that fluctuating velocities are large in
all directions.
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Figure 2.3: Osborn Reynolds (1842-1912), whose 1895 paper on the dynamics
of fluid motion established the averaging techniques that bear his name.

by a constant-speed blower. For such a flow, we express an instantaneous flow
variable as f(x,t). Its time average, F'r(x), is defined by

r(x) = 11m 1 f(x,t)dt (2.1)
co T’ t

The velocity profile depicted in Figure 2.2(b), for example, was obtained using
time averaging for accurate measurements of a similar boundary layer. The
applicability of Reynolds averaging (of whatever kind) implicitly depends upon
this steadiness of mean values. Time averaging is the most commonly used form
of Reynolds averaging because most turbulent flows of interest in engineering
are stationary. There are important exceptions, of course, such as the motion of
the atmosphere.

Spatial averaging can be used for homogeneous turbulence, which is a
turbulent flow that, on the average, is uniform in all directions. We average over
all spatial coordinates by doing a volume integral. Calling the average F\,, we
have

Fo(t) = v“-‘.“wil/' / / [ rxpav 2.2)

Ensemble averaging is the most general type of Reynolds averaging suitable
for, e.g., flows that decay in time. As an idealized example, in terms of mea-
surements from N identical experiments (with initial and boundary conditions
that differ by random infinitesimal perturbations) where f(x,?) = f.(x, ) in the
nt* experiment, the average is Fj, defined by

Fp(x,t) = lim — Z Fr(X,1) (2.3)

’."L"'
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Ui(x, t) A

U,(x)

>~ f

Figure 2.4: Time averaging for stationary turbulence. Although obscured by the
scale of the graph, the instantaneous velocity, u;(x, t), has continuous derivatives
of all order.

From this point on, we will consider only time averaging. There is no loss
of generality however as virtually all of our results are valid for other kinds of
Reynolds averaging. Consider a stationary turbulent flow so that Equation (2.1)
holds. For such a flow, we express the instantaneous velocity, u;(x,t), as the
sum of a mean, U;(x), and a fluctuating part, u/(x, t), so that?

ui(x, 1) = Uy(x) + ui(x, 1) (2.4)

As in Equation (2.1), the quantity U;(x) is the time-averaged, or mean, ve-

locity defined by
t+T

Ui(x) = Thinx 7, wi(x, t) dt (2.5)
The time average of the mean velocity is again the same time-averaged value,
ie.,

- 1 T
U:(x) = lim — f Ui(x) dt = U; (x) (2.6)
t

Tooo T

where an overbar is shorthand for the time average. The time average of the
fluctuating part of the velocity is zero. That is, using Equation (2.6),

_ g pbE mac
I~ lim ~ j [ui(x, 8) — Ux)] dt = Us(x) ~Ti(x) =0 (2.7
T—00 T t
While Equation (2.5) is mathematically well defined, we can never truly
realize infinite T" in any physical flow. This is not a serious problem in practice.
In forming our time average, as illustrated in Figure 2.4, we just select a time T

2By convention, throughout this text the instantaneous variable is denoted by a lower-case symbol,
the mean is denoted by the corresponding upper-case symbol and the fluctuating part is the lower-case
symbol with a prime.
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Figure 2.5: Time averaging for nonstationary turbulence. Although obscured
by the scale of the graph, the instantaneous velocity, u;(X,t), has continuous
derivatives of all order.

that is very long relative to the maximum period of the velocity fluctuations, 77,
which we don’t need to define precisely. In other words, rather than formaily
taking the limit 7" — oc, we do the indicated integration in Equation (2.5) with
T » Th1. As an example, for flow at 10 m/sec in a 5 cm diameter pipe, an
integration time of 20 seconds would probably be adequate. In this time the flow
moves 4000 pipe diameters.

There are some flows for which the mean flow contains very slow variations
with time that are not turbulent in nature. For instance, we might impose a
slowly varying periodic pressure gradient in a duct or we might wish to compute
flow over a helicopter blade or flow through an automobile muffler. Clearly,
Equations (2.4) and (2.5) must be modified to accommeodate such applications.
The simplest, but a bit arbitrary, method is to replace Equations (2.4) and (2.5)
with

ui(xa t) =U; (Xa t) ot ’U;E(X, t) (2.8)
and
1 t+T
U;(x,t) = Tf wi{x, t) dt, hiwl<1s (2.9)
t

where T5 is the time scale characteristic of the slow variations in the flow that
we do not wish to regard as belonging to the turbulence. Figure 2.5 illustrates
these concepts.

A word of caution is in order regarding Equation (2.9). We are implicitly
assuming that time scales 73 and 75 exist that differ by several orders of magni-
tude. Many unsteady flows of engineering interest do not satisfy this condition.
We cannot use Equations (2.8) and (2.9) for such flows because there is no dis-
tinct boundary between our imposed unsteadiness and turbulent fluctuations. For
such flows, the mean [as defined in Equation (2.9)] and fluctuating components
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are correlated, i.e., the time average of their product is non-vanishing, In mete-
orology, for example, this is known as the spectral gap problem. If the flow is
periodic, Phase Averaging (see problems section) can be used; otherwise, full
ensemble averaging is required. Phase averaging is a type of ensemble averaging
with phase angle replacing time. For a rigorous approach, an alternative method
such as Large Eddy Simulation (Chapter 8) will be required.

Clearly our time-averaging process, involving integrals over time, commutes
with spatial differentiation. Thus, for any scalar p and vector u;,

p:=F; and u;=U; (2.10)

Because we are dealing with definite integrals, time averaging is a linear op-
eration. Thus if ¢; and c¢; are constants while a and b denote any two flow
properties with mean values A and B, respectively, then

cia+cab=c1A+ B (2.11)
The time average of an unsteady term like Ju; /9t is obviously zero for stationary

turbulence. For nonstationary turbulence, we must look a little closer. We know
that

1 T ] . Ui x,t +T) - U (x,t u(x,t +7T) — ul(x,t)
?/t %(Uﬁu;)dt: ( +2)“ (x,t) | i +11 (x,)
(2.12)
The second term on the right-hand side of Equation (2.12) can be neglected
provided |u}| is small relative to |U;|. Since we are assuming T is very small
relative to the time scale of the mean flow, i.e. that T < T3, the first term is the

valuc corresponding to the limit 7' — 0, i.e., OU;/9t. Hence,

8’0:1' BU.,.
B (2.13)

The approximation that |u}| < |U;| is always questionable, especially for
free shear flows and for flows very close to a solid boundary. This is one of
the inherent complications of turbulence, namely that the fluctuations cannot be
assumed to be small relative to the mean values.

Using time averaging in this manner is nevertheless useful for analysis, espe-
cially for time-marching numerical methods implemented for solving steady-flow
problems. Because Equation (2.13) depends on the doubtful approximation that
|ul| < |U;| while fluctuations are often in excess of 10% of the mean, a degree
of caution must be exercised when such methods are used for time-varying flows.
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2.2 Correlations

Thus far we have considered averages of linear quantities. When we average the
product of two properties, say ¢ and 1, we have the following:

W=(+)T+v) =0V +Y + VP +F¢ =dV +Fd (2.14)

where we take advantage of the fact that the product of a mean quantity and a

fluctuating guantity has zero mean because the mean of the latter is zero. There

is no a priori reason for the mean of the product of two fluctuating quantities

to vanish. Thus, Equation (2.14) tells us that the mean value of a product, ¢,

differs from the product of the mean values, ®¥. The quantities ¢’ and ¢’ are

said to be correlated if ¢’7)’ # 0. They are uncorrelated if ¢’y = 0.
Similarly, for a triple product, we find

PPE = DUE + FHE+FTED + FEV + FPE (2.15)

Again, terms linear in ¢’, ¢’ or £’ have zero mean. As with terms quadratic in
fluctuating quantities, there is no a priori reason for the cubic term, ¢’¢’£’, to
vanish.

2.3 Reynolds-Averaged Equations

For simplicity we confine our attention to incompressible, constant-property flow.
Effects of compressibility will be addressed in Chapter 5. The equations for
conservation of mass and momentum are

6%;‘
52, =" (2.16)
8?1,5 Bui o Bp atj,g

The vectors u; and z; are velocity and position, ¢ is time, p is pressure, p is
density and ¢;; is the viscous stress tensor defined by

tij = 20845 (2.18)

where p is molecular viscosity and s;; is the strain-rate tensor,

o e E aui + _(?_ELJ_ 2.19
5ij = 2 c’):z:j 8:1:, ( ’ )

Note that s;; = s;;, so that ¢;; = t;; for simple viscous fluids (but not for some
anisotropic liquids).
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To simplify the time-averaging process, we rewrite the convective term in
“conservation” form, i.e.,
ou; 0, Ou; 7,
ia— = —(Ujli) — Uui—— = —(u;u; 2.20
i 83%; 83,'3' (ujul) t@a:j 833'3' (u'? ) ( )
where we take advantage of mass conservation [Equation (2.16)] in order to drop
u;0uj/Or;. Combining Equations (2.17) through (2.20) yields the Navier-Stokes
equation in conservation form.
6?;3 o ap

o
P P gy ) = = g + 5 (Bhisi) 2.21)

Time (ensemble) averaging Equations (2.16) and (2.21) yields the Reynolds
averaged equations of metion in conservation form, viz.,

oU;
LA 2.2
6%— 0 ( 2)
EJ‘U d —_— oP e,
U+ ) = — I (2uS;: :
e +p8 (JJU +u}uz) 57 + 5:1:5,-(2# i) (2.23)

The time-averaged mass—conscrvation Equation (2.22) is identical to the instanta-
neous Equation (2.16) with the mean velocity replacing the instantaneous velocity.
Subtracting Equation (2.22) from Equation (2.16) shows that the fluctuating ve-
locity, w}, also has zero divergence. Aside from replacement of instantaneous
variables by mean values, the only difference between the time-averaged and in-
stantaneous momentum equations is the appearance of the correlation m This
is a time-averaged rate of momentum transfer due to the turbulence.

Herein lies the fundamental problem of turbulence. In order to compute
all mean-flow properties of the turbulent flow under consideration, we need a
prescription for computing ulu J

Equation (2.23) can be written in its most recognizable form by using Equa-
tion (2.20) in reverse. The resulting equation is

A, ) o
i TG = T Ba, (2;;,85,1 = ,oujui) (2.24)

Equation (2.24) is usually referred to as the Reynolds-averaged Navier-Stokes
equation (RANS). The quantity —pu;u’ is known as the Reynolds-stress tensor
and we denote it by p7;;, so that 7; is the specific Reynolds stress tensor given

by

Tij = —-u;u; (2.25)

By inspection, 7;; = 7;; so that this is a symmetric tensor, and thus has six
independent components. Hence, we have produced six unknown quantities as
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a result of Reynolds averaging. Unfortunately, we have gained no additional
equations. Now, for general three-dimensional flows, we have four unknown
mean-flow properties, viz., pressure and the three velocity components. Along
with the six Reynolds-stress components, we thus have ten unknowns. Our
equations are mass conservation [Equation (2.22)] and the three components of
Equation (2.24) for a grand total of four. This means our system is not yet closed.
To close the system, we must find enough equations to solve for our unknowns.

2.4 The Reynolds-Stress Equation

In quest of additional equations, we can take moments of the Navier-Stokes equa-
tion. That is, we multiply the Navier-Stokes equation by a fluctuating property
and time average the product. Using this procedure, we can derive a differential
equation for the Reynolds-stress tensor. To illusirate the process, we introduce
some special notation. Let A (u;) denote the “Navier-Stokes operator,” viz.,

Ou; Ou;  Op 0%,
flig) 22pt - - :
N (U;} P at + puk amk + 63’:% #’aﬂjkaﬂfk

(2.26)

The viscous term has been simplified by noting from mass conservation (for
incompressible flow) that sg; » = u; xx. The Navier-Stokes equation can be
written symbolically as

N(uﬁ) =0 (2.27)

In order to derive an equation for the Reynolds stress tensor, we form the fol-
lowing time average.

uiN(uj) + uiN(uw;) =0 (2.28)

Note that, consistent with the symmetry of the Reynolds stress tensor, the
resulting equation is also symmetricin ¢ and j. For the sake of clarity, we proceed
term by term. Also, for economy of space, we use tensor notation for derivatives
throughout the time averaging process. Non-obvious results in the following
equations usually involve the continuity equation (Ju;/0x; = Oul/8r; = 0) in
various ways. First, we consider the unsteady term.

ui(pu;) e +uf(ow) e = pul(Us +u)) s + puf (Ui + uf) 4

= T + ]

! B L

o Tl
U + PUU;G

= plulu))s
BT@J‘

es 2.29
-y (2.29)
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Turning to the convective term, we have

PULURUS | + PUL UK k

+

I

+

+

I

-+

pui(Ur + u) (U + uj)
pui(Ur + ) (Us + ui)
puiUkus g, + puiug (Us + u5) k

puUru g + pujug(Us + w)) i

PUk (uiu}) k + pujupUj k
pu; 'U»kUa k +P'U»k(u ) k
oT; oU; U,
—pU, _i —PTik— — PTif——
Pa.»;; () (2.30)

In order to arrive at the final line of Equation (2.30), we use the fact that
Ou}, /Ozy = 0. The pressure gradient term is straightforward.

o . L
U;P,j + UsD,i

Finally, the viscous term yields

p(ujug kr + Uv;'ui,k.’c)

ul(P 4 p' ui(P+p)

wp'; +ulp;

-
38.’133'

,0p 0P

J 8.’131

+u (2.31)

pui{U; +uj) gk + pui (Ui + ul) ki

MU g = UGG

P"('u’w TR k) .kt ﬂ’(uj i, k),

! !
— 20U, U g

w(u] 'U»_—,) Kk — 24 kuj k

ol 3’U»
~2up tot (2.32)

0?7
6:1:;98:8}9

Collecting terms, we arrive at the equation for the Reynolds stress tensor.

07 Oij _.9U
5t T Yoz, Tik B
+ _.Q.. v 87—3}
8.’Ek chk

BV BN oy, W oy
Jkax Bzr,'k 8$k p Ox; p Ox;
+ u;u;u;c] (2.33)
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We have gained six new equations, one for each independent component of
the Reynolds-stress tensor. However, we have also generated 22 new unknowns!
Specifically, accounting for all symmetries, we have the following.

u;uju’k ~ — 10 unknowns

Ou 3115;:
Oz, Oy

F o ! /
U U Op
. + -4 —

&

— 6 unknowns

?8_:; > Bz, — 6 unknowns
i i

With a little rearrangement of terms, we can cast the Reynolds-stress equa-
tion in suitably compact form, viz.,

B’Tij 37';'3' _ 8UJ- ‘ aU,, o0 (9’7'1'3.' -I
ot + Uy Ber Tik Bz Tjkaxk_ +EIJ—H23+6$’Q V&Bk + CukJ (2.34)
where
p' [ ou! 6uj
Ihge= | Zebibioe 35
J P (d$j+82?5) 2.3 )
Au! o,

ij = 2w+ L 2
€ij VB.rk B2y (2.36)
pCuik = pujujuy + p'uibik + p'udix (2.37)

This exercise illustrates the closure problem of turbulence. Because of the
nonlinearity of the Navier-Stokes equation, as we take higher and higher mo-
ments, we generate additional unknowns at each level. At no point will this
procedure balance our unknowns/equations ledger. On physical grounds, this is
not a particularly surprising situation. After all, such operations are strictly math-
ematical in nature, and introduce no additional physical principles. In essence,
Reynolds averaging is a brutal simplification that loses much of the information
contained in the Navier-Stokes equation. The function of turbulence modeling
is to devise approximations for the unknown correlations in terms of flow prop-
erties that are known so that a sufficient number of equations exists. In making
such approximations, we close the system.

2.5 The Scales of Turbulence

In Chapter 1, we introduced the Kolmogerov length, velocity and time scales,
which are characteristic of the smallest eddies. We also discussed the integral
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length scale, /, which is representative of the energy-bearing eddies. While these
are some of the most useful scales for describing turbulence, there are others that
are commonly used. The purpose of this section is to further quantify the most
commonly used turbulence scales, and briefly introduce the concept of two-point
correlations.

2.5.1 Turbulence Intensity

The Kolmogorov scales, defined in Equation (1.1), provide an estimate of the
length, velocity and time scales for the smallest eddies in a turbulent flow. The
integral length scale, whose definition has been deferred to this chapter, is a
characteristic size of the energy-bearing eddies. Another important measure of
any turbulent flow is how intense the turbulent fluctuations are. We quantify this
in terms of the specific normal Reynolds stress components, %2, v'2 and w'2.
These three normal Reynolds stresses can also be regarded as the kinetic energy
per unit mass of the fluctuating velocity field in the three coordinate directions.
These Reynolds stresses are often normalized relative to the freestream mean-flow

velocity, U, according to

Ry
ﬁ

w2 JE w2
S W
U e ’ Ue ’ UE

The quantities @, v and w are known as the relative intensities in the x, ¥ and
z directions, respectively.

Figure 2.6 displays the relative intensities for an incompressible flat-plate
boundary layer. As shown, the three intensities have different values throughout
most of the boundary layer. This is true because the turbulence is anisotropic,

i.e., the normal-stress components are unequal. As a rough but useful approxi-
mation for a flat-plate boundary layer, we find that

w2 v?2 w?=4:2:3 (2.39)

i
i

(2.38)

1l

(7

These ratios are of course not constant through the layer; also, they are by
no means universal for boundary layers, being strongly influenced by pressure
gradient and compressibility.

Note that the streamwise intensity, 4 = ﬁ/ U., exceeds 0.10, or 10%,
very close to the surface. This is consistent with the instantaneous velocity
profiles shown in Figure 2.2, and further reinforces the claim that the turbulent
fluctuations cannot be adequately treated as a small perturbation about the mean.

If we sum the three normal Reynolds stresses and multiply by 1, we have
the turbulence kinetic energy, which we denote by the symbol k. Thus, by
definition,

l — — 1
= E(u"? + 02 + w'?) = Eu;u; (2.40)
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Figure 2.6: Turbulence intensities for a flat-plate boundary layer of thickness §.
The inset shows values very close to the surface [From Klebanoff (1955)].

This is the kinetic energy of the turbulent fluctuations per unit mass, and is the
same as the quantity defined in Equation (1.3).

As a concluding comment, many turbulence models in current use cannot
distinguish the individual normal Reynolds stresses. Rather, only & is provided
from the turbulence model. When this is true, we often specify relative turbu-
lence intensity by assuming the fluctuations are more-or-less isotropic, i.e., that
u? =~ 12 = w2, We then define

T = 100 ; (2.41)

which gives the relative intensity in percent.

2.5.2 Two-Point Correlation Tensors and Related Scales

All of the discussion in this chapter thus far has dealt with single-point corre-
lations. That is, we have been dealing with correlations of turbulent fluctuations
at a single point in the flowfield. However, as discussed at the end of Subsec-
tion 1.3.2, turbulent eddies are large (and long lived). Consequently, it cannot in
general be described entirely in terms of local-flow properties. Townsend (1976)
states this succinctly as follows,
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Unlike the molecular motion of gases, the motion at any point in a
turbulent flow affects the motion at other distant points through the
pressure field, and an adequate description cannot be obtained by
considering only mean values associated with single fluid particles.
This might be put by saying that turbulent motion is less vandom and
more [organized] than molecular motion, and that to describe the
[organization] of the flow requires mean values of the functions of
the flow variables for two or more particles at two or more positions.

In this subsection, we introduce the notion of twe-point correlations, and in-
troduce related time and length scales characteristic of turbulent motion.

There are two types of two-point correlations commonly used in experimental
and theoretical turbulence studies. One involves a separation in time while the
other is based on a spatial separation. The two are related by Taylor’s (1935)
hypothesis, which assumes temporal and spatial separations are related by

J 0

5~ Ubs (2.42)
This implies the turbulent fluctuations are convected along at the mean-flow
speed, U. The Taylor hypothesis is valid provided the turbulent fluctuations are
sufficiently weak to avoid inducing significant alterations in the rate at which
they are convected. This relationship permits inferring more-relevant two-point
space-correlation information from easier-to-measure one-point time-correlation
data.

Considering first correlation of velocities at one point and two different times,

we define the autocorrelation tensor, viz.,

Rij(x, tt') = ui(x, thuj(x, t +¢') (2.43)

That is, we time average the fluctuating quantitics at the same point in space but
at different times. To see the connection to single-point statistics, note that the
turbulence kinetic energy is half the trace of R;; with ¢’ =0, i.e,,

k(x,t) = -;—Ri«i.()i, t;0) (2.44)

A useful time scale characteristic of the energy-bearing eddies can be obtained
by integrating R;; over all possible values of t'. Thus, we arrive at the integral
time scale,

* Riux, ;1)
0 2k(x,t)
In defining 7(x, ), we have normalized R, relative to k. For experimental
work involving stationary turbulence, i.e., turbulence for which mean values are

T(X, 1) = dt’ (2.45)
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independent of time, we commonly work with the single streamwise component
Rii(x;t") = u'(x, )/ (x,t + ¢'). Normalizing with respect to u'2, we arrive at
the Eulerian time-correlation coefficient defined by

w(x, t)u' (X, t + )

Re(x;t) = 00

(2.46)

By definition, R = 1 when ¢’ = 0. For large values of #/, we expect the
fluctuations to be uncorrelated so that Rz — 0 as |[t/| — oo. Finally, shifting the
time origin shows that Rj1(x;t') = R11(x; —t’), so that R is an even function
of ¢'. Figure 2.7 shows a typical Eulerian time-correlation coefficient.

We can determine another time scale by noting the shape of the Eulerian
time-correlation coefficient for small time displacement, #'. This is determined,
of course, mainly by the small dissipating eddies. That is, expanding in Taylor
serics about t' = 0, we have

" (0°R, t'\?
Re(x;t) =1+ — (—) +---m - (— (2.47)
2 8‘5"2 t"=0 TE)

where we define the micro-time scale, 7, as

—2

e =\ @R (2.48)

Figure 2.7 shows how Equation (2.47) relates geometrically to the exact
time-correlation coefficient. Truncating beyond the term quadratic in ¢’ yields a
parabola known as the osculating parabela. Tts curvature matches that of the
exact curve at ¢’ = 0. The intercept with the horizontal axis is at ¢ = 7.

RE}

Figure 2.7: A typical Eulerian time-correlation coefficient (—) with its oscu-
lating parabola (- ~ -).
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Turning now to the two-point space correlation, we consider two points in
the flow, say x and x+r, and do our time average. The two-point velocity
correlation tensor is defined as

Rij(%, 8 1) = uj(x, t)ui(x +r,t) (2.49)

Here, the vector r is the displacement vector between the two points in the flow.
As with the autocorrelation tensor, the turbulence Kkinetic energy is simply one
half the trace of R;; with zero displacement. viz.,

k(x, t) = %Rﬁ(x, i; 0) (250)

Normalizing R;; with respect to k, the integral length scale, ¢, is defined
as the integral of R,;; over all displacements, » = |r|, so that

. 3 e Ru-(x, f; T‘)

where 3/16 is a scaling factor.

In an entirely analogous manner to our analysis of two-point time correlations,
we can determine a length scale corresponding to the smallest eddies. We work
with the longitudinal correlation function for stationary turbulence defined by

Ryi(z;7)

) (2.52)

fla;r) =

Constructing the osculating parabola for f(x), we find the Taylor microscale

given by
o -2

Taylor’s hypothesis tells us the micro-time scale, 75, is related to A by

A = UTE (2'54)

As a final comment, when the turbulence is homogeneous and isotropic,
the analysis of Taylor (1935) shows that the turbulence kinetic energy decays

according to
dk  10vk

dt A2
To see how A relates to the Kolmogorov length, we note that for homogeneous,
isotropic turbulence, the rate of decay of k is simply the dissipation rate, €, so
that

(2.55)

ak_ 100k
FT — T TR

(2.56)
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Provided the Reynolds number is not too small, Taylor argues that e ~ k3/2 /2.
We can sharpen the estimate by appealing to measurements that indicate

§3/2 ¢ \2/3
ex000—— =  kn~ (ﬁi)_g) (2.57)

Then, using the definition of the Kolmogorov length, n = (¢2/¢)!/4, [see Equa-
tion (1.1)] combining Equations (2.56) and (2.57) yields

1/3
% ~ T (ﬁ-) (2.58)

Since €/ must be at least 10° to have a well-defined inertial subrange, the Taylor
microscale will be at least 70 times the Kolmogorov length. It will typically lie
within the inertial subrange, but well above the range of the very smallest eddies.

Such a hybrid parameter is of questionable value in turbulence modeling re-
search, which, for the sake of simplicity, attempts to separate the physics of the
large eddies from that of the small eddies. Recall, for example, how the assump-
tion of a “wide separation of scales” is used to deduce the Kolmogorov —5/3
law (Subsection 1.3.4) and the logarithmic law of the wall (Subsection 1.3.5).
To understand why the Taylor microscale is a hybrid length scale, observe that
we can use Equation (2.56) to solve for A, viz.,

A=/ 10:““ (2.59)

Hence, this length scale involves a quantity characteristic of the large, energy-
bearing eddies, k, as well as quantities characteristic of the small, dissipating
eddies, v and e. Because the Taylor microscale is generally too small to char-
acterize large eddies and too large to characterize small eddies, it has generally
been ignored in most turbulence-modeling research. The same comments apply
to the micro-time scale, 7.
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Problems

2.1 Develop the time-averaged form of the equation of state for a perfect gas, p = pRT,
accounting for turbulent fluctuations in the instantaneous pressure, p, density, p, and
temperature, 1"

2.2 Suppose we have a velocity field that consists of: (i) a slowly varying component
U(t) = Upe %" where Uy and T are constants and (i) a rapidly varying component
u’ = alp cos (2mt/e’ ) where a and € are constants with € < 1. We want to show that
by choosing T" = €7, the limiting process in Equation (2.9) makes sense.

(a) Compute the exact time average of u = U + u’.

(b) Replace T by eT in the slowly varying part of the time average of w and let ¢ = €°7

in the fluctuating part of u to show that
U+vw =U(t)+0O(e)

where ()(e) denotes a quantity that goes to zero linearly with ¢ as e — 0.

(c) Repeat Parts (a) and (b) tor du/dt, and verify that in order for Equation (2.13) to
hold, necessarily a < ¢.

2.3 For an imposed periodic mean flow, a standard way of decomposing flow properties
is to write
u(x,t) = U{x) + a(x,t) + u'(x,1)

where U(x) is the mean-value, u(x,¢) is the organized response component due to the
imposed organized unsteadiness, and u’(x, ¢) is the turbulent fluctuation. U{x) is defined
as in Equation (2.5). We also use the Phase Average defined by

N-1
. 1
<u(x,t)> = Nl_l_x_nm ~ Z u(x,t + n7)

n=>0
where 7 is the period of the imposed excitation. Then, by definition,
<u(x,t)> =U(x)+ax,t), <u(x,t}> =U(x), <a(x,t)>=1a(x,t)

Verify the following. Do not assume that % is sinusoidal.

(ayd =0 d)<U>=U (g) <tw>= d4<v>
b) v = (e) <u'>=0 (h) <av’'>= 0
(c) wr’ =0 H<Uv>=U<v>

2.4 Compute the difference between the Reynolds average of a triple product Ado and
the product of the means, AAX.

2.5 Compute the difference between the Reynolds average of a quadruple product ¢év
and the product of the means, PU=T.
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2.6 For an incompressible flow, we have an imposed freestream velocity given by
u(z,t) = Us(1 — ax) + Usax sin2r ft

where a is a constant of dimension 1/length, U, is a constant reference velocity, and f
is frequency. Integrating over one period, compute the average pressure gradient, dP/dz,
for f =0 and f # 0 in the freestream where the inviscid Euler equation holds, i.e.,

du Ou  Op

PE'FPUB—:E = W

2.7 Consider the Reynolds-stress equation as stated in Equation (2.34).

(a) Show how Equation (2.34) follows from Equation (2.33).

(b) Contract Equation (2.34), i, set i = j and perform the indicated summation, to
derive a differential equation for the kinetic energy of the turbulence per unit mass
defined by k = Fulul.

2.8 Consider the third-rank tensor wju’u; appearing in Equation (2.33). In general,
third-rank tensors have 27 components. Verify that this tensor has only 10 independent
components and list them.

2.9 If we rotate the coordinate system about the z axis by an angle 8, the Reynolds stresses
for an mcompressible two-dimensional boundary layer transform according to:

1 1
Tog = 5 (Tee + Tyy) + > (Tze — Tyy) €08 260 + T, sin 20
1 1 .
T;y = 3 (Tox + Tyy) — 3 (Tox — Tyy) €08 20 — T4y sin 26
1
Toy = Tuyc0s20 — 3 (Tox — Tyy) sin 28
4
Tzz == Tzz
Assume the normal Reynolds stresses, 7., = —u'2, etc. are given by Equation (2.39),
and that the Reynolds shear stress is 7., = —u/v’ & %k.
y!’
Problem 2.9

(a) Determine the angle the principal axes make with the zy axes, i.e., the angle that
yields 7, = 0.

(b) What is the Reynolds-stress tensor, 7;;, in the principal axis system?
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2.10 Using Figure 2.6, determine the values of u2/k, v"2 /k and w2 /k for dimensionless
distances from the surface of y/8 = 0.2, 0.4 and 0.6. Determine the percentage differences

between measured values and the following approximations.
(a) Equation (2.39)

®) w2~k v?2 2k w? 3k

oL

2.11 Verify that, for homogeneous-isotropic turbulence, the ratio of the micro-time scale,
Tr, to the Kolmogorov time scale varies linearly with the isotropic turbulence-intensity

parameter, T".



Chapter 3

Algebraic Models

The simplest of all turbulence models are described as algebraic. These models
use the Boussinesq eddy-viscosity approximation' to compute the Reynolds
stress tensor as the product of an eddy viscosity and the mean strain-rate tensor.
For computational simplicity, the eddy viscosity, in turn, is often computed in
terms of a mixing length that is analogous to the mean free path in a gas. In
contrast to the molecular viscosity, which is an intrinsic property of the fluid, the
eddy viscosity (and hence the mixing length) depends upon the flow. Because
of this, the eddy viscosity and mixing length must be specified in advance, most
simply, by an algebraic relation between eddy viscosity and length scales of the
mean flow. Thus, algebraic models are, by definition, incomplete models of
turbulence. This is by no means a pejorative term as incomplete models have
proven to be useful in many engineering fields.

We begin this chapter by first discussing molecular transport of momentum.
Next we introduce Prandtl’s mixing-length hypothesis and discuss its physical im-
plications and limitations. The mixing-length model is then applied to free shear
flows for which self-similar solutions hold. We discuss two modern algebraic
turbulence modeis that are based on the mixing-length hypothesis, including ap-
plications to attached and separated wall-bounded flows. The latter applications
illustrate the limit to the algebraic model’s range of applicability. An interesting
separated-flow replacement for algebraic models, known as the Half-Equation
Model, improves agreement between computed and measured flow properties.
The chapter concludes with a discussion of the range of applicability of algebraic
and half-equation models.

1Throughout this text, we use the terminology Boussinesq approximation for consistency with
general turbulence literature. Strictly speaking, we could more aptly describe it as the Boussinesq
assumption since it is not an approximation in any uscful sense. By contrast, specific formulas for
the eddy viscosity are.

53
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3.1 Molecular Transport of Momentum

To understand the motivation for the Boussinesq approximation, it is instructive
to discuss momentum transport at the molecular level. However, as a word of
caution, molecules and turbulent eddies are fundamentally different. They
are so different that we will ultimately find, in Section 3.2, that the analogy
between turbulent and molecular mixing is false! It is nevertheless fruitful to
pursue the analogy to illustrate how important it is to check the premises underly-
ing turbulence closure approximations. At first glance, mimicking the molecular
mixing process appears to be a careful exercise in physics. As we will see, the
model just cannot stand up under close scrutiny.

Yy U(y)

Y

2Umsp

Figure 3.1: Shear-flow schematic.

We begin by considering a shear flow in which the velocity is given by
U=U(y)i 3.1

where i is a unit vector in the x direction. Figure 3.1 depicts such a flow. We

consider the flux of momentum across the plane y = 0, noting that molecular

motion is random in both magnitude and direction. Molecules migrating across

y — 0 are typical of where they come from. That is, molecules moving up

bring 2 momentum deficit and vice versa. This gives rise to a shear stress ¢,,,.
At the molecular level, we decompose the velocity according to

u=U+u" (3.2)
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where U is the average velocity defined in Equation (3.1) and u” represents
the random molecular motion. The instantaneous flux of any property across
y = 0 is proportional to the velocity normal to the plane which, for this flow, is
simply v”’. Thus, the instantaneous flux of z-directed momentum, dpzy, aACross
a differential surface area d.S normal to the y direction is

Apzy = p(U +u"")0"dS (3.3)
Performing an ensemble average over all molecules, we find
dP., = pu"v"dS (3.4)

The stress acting on y = 0 is defined by 0, = dP,,/dS. 1t is customary in
fluid mechanics to set 0;; = pd;; —t;;, where p is pressure and ¢;; is the viscous
stress tensor. Thus,

by = —puv" (3'5)
Equation (3.5) bears a strong resemblance to the Reynolds-stress tensor. This
is not a coincidence. As pointed out by Tennekes and Lumley (1983), a stress
that is generated as a momentum flux can always be written in this form. The
only real difference is that, at the macroscopic level, the turbulent fluctuations,
u’ and ', appear in place of the random molecular fluctuations, »”" and v'*. This
similarity is the basis of the Boussinesq eddy-viscosity approximation.

Referring again to Figure 3.1, we can appeal to arguments from the kinetic
theory of gases [e.g., Jeans (1962)] to determine t,.,, in terms of U (y) and the fluid
viscosity, u. First, consider the average number of molecules moving across unit
area in the positive y direction. For a perfect gas, molecular velocities follow the
Maxwellian distribution so that all directions are equally probable. The average
molecular velocity is the thermal velocity, v, which is approximately 4/3 times
the speed of sound in air. On average, half of the molecules move in the positive
y direction while the other half move downward. The average vertical component
of the velocity is vy, cos ¢ where ¢ is the angle from the vertical. Integrating
over a hemispherical shell, the average vertical speed is v¢n, /2. Thus, the average
number of molecules moving across unit area in the positive y direction is nv. /4,
where n is the number of molecules per unit volume.

Now consider the transfer of momentum that occurs when molecules starting
from point P cross the y = 0 plane. As stated earlier, we assume molecules are
typical of where they come from. On the molecular scale, this is one mean
free path away, the mean free path being the average distance a molecule travels
between collisions with other molecules. Each molecule starting from a point P
below y = 0 brings a momentum deficit of m[U(0) — U(—¥¢, )], where m is
the molecular mass and £, f, is the mean free path. Hence, the momentum flux
from below is

1 dU

1
AP = ZP’Uth[U(O) - U{_’emfpn ~z apvthgmfpa‘; (3-6)
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We have replaced U(—£,, ) by the first two terms of its Taylor-series expan-
sion in Equation (3.6) and used the fact that p = mn. Similarly, each molecule
moving from a point Q above the plane y = 0 brings a momentum surplus of
m[U (msp) — U(0)], and the momentum flux from above is

1 | dU
APy = 2pvenlU(bmsp) — U(0)] = Zﬁvthfmfp@ (3.7)
Consequently, the net shearing stress is the sum of AP.. and AP, , wherefore
1 alU
tey = AP + AP, = Ep'vghfm_f:pd—y- (3.8)
Hence, we conclude that the shear stress resulting from molecular transport

of momentum in a perfect gas is given by
au

by = (h—— .
y = M dy (3.9
where u is the molecular viscosity defined by
1
= "2-,0Uth£mfp (3.10)

The arguments leading to Equations (3.9) and (3.10) are approximate and
only roughly represent the true statistical nature of molecular motion. Interest-
ingly, Jeans {1962) indicates that a precise analysis yields . = 0.499pv8,, s
wherefore our approximate analysis is remarkably accurate! However, we have
made two implicit assumptions in our analysis that require justification.

First, we have truncated the Taylor series appearing in Equations (3.6) and
(3.7) at the linear terms. For this approximation to be valid, we must have
L pn|d?U/dy?| < |dU/dy|. The quantity L defined by

[dU/dy|

L el
|d2U/dy?|

(3.11)

is a length scalc characteristic of the mean flow. Thus, the linear relation between
stress and strain-rate implied by Equation (3.9) is valid provided the Knudsen
number, K'n, is very small, i.e.,

Kn=4y;,/L <1 (3.12)

For most practical flow conditions,” the mean free path is several orders of
magnitude smaller than any characteristic length scale of the mean flow. Thus,
Equation (3.12) is satisfied for virtually all terrestrial engineering problems.

2Two noteworthy exceptions are very-high altitude flight and micron-scale flows such as those
encountered in micro-machinery.
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Second, in computing the rate at which molecules cross y = 0, we assumed
that u”’ remained Maxwellian even in the presence of shear. This will be true
if molecules experience many collisions on the time scale of the mean flow for,
otherwise, they would have insufficient time to adjust to mean-flow changes.
Now, the average time between collisions is £, 5, /vin. The characteristic time
scale for the mean flow is |dU/dy|~!. Thus, we also require that

Uth
b fp € = 3.13)
TP 1dU/ dy]
Since vy, is of the same order of magnitude as the speed of sound, the right-hand
side of Equation (3.13) defines yet another mean-flow length scale. As above,
the mean free path is several orders smaller than this length scale for virtually
all flows of engineering interest.

3.2 The Mixing-Length Hypothesis

Prandtl (1925) put forth the mixing-length hypothesis. He visualized a simplified
model for turbulent motion in which fluid particles coalesce into lumps that cling
together and move as a unit. He further visualized that in a shear flow such as
that depicted in Figure 3.1, the lumps retain their z-directed momentum for a
distance in the y direction, £, that he called the mixing length. In analogy to
the molecular momentum transport process with Prandtl’s lump of fluid replacing
the molecule and ¢, replacing Z,¢,, we can say that similar to Equation (3.8),

1 au 1 au

ﬁTxy - §pv‘rni:.c’€7nm:d—y — T:t’:;i} — Evméxemiw 'ag (314)
The formulation is not yet complete because the mixing velocity, v,,,;., has

not been specified. Prandtl further postulated that

dtu

7 (3.15)

Umiz = constant - £,z

which makes sense on dimensional grounds. Because £,,;, is not a physical
property of the fluid, we can always absorb the constant in Equation (3.15) and
the factor 1/2 in Equation (3.14) in the mixing length. Thus, by analogy to
Equations (3.9) and (3.10), Prandtl’s mixing-length hypothesis leads to

dU
Tey = VTd—’tj (316)
where v is the kinematic eddy viscosity given by
dU

vy = €2

(3.17)

dy
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Our formulation still remains incomplete since we have replaced Boussi-
nesq’s empirical eddy viscosity, v, with Prandtl’s empirical mixing length, £,;z.
Prandtl postulated further that for flows near solid boundaries the mixing length
is proportional to distance from the surface. This turns out to be a reasonably
good approximation over a limited portion of a turbulent wall flow. As we will
see in Section 3.3, for free shear flows such as jets, wakes and mixing layers,
the mixing length is proportional to the width of the layer, 6. However, each of
these flows requires a different coefficient of proportionality between ¢,,,;,, and
4. The point is, the mixing length is different for each flow (its ratio to the flow
width, for example) and must be known in advance to obtain a solution.

Note that Equation (3.17) can be deduced directly from dimensional analysis.
Assuming molecular transport of momentum is unimportant relative to turbulent
transport, we expect molecular viscosity to have no significance in a dimensional
analysis. The only other dimensional parameters available in a shear flow are
the assumed mixing length, £,,;-, and the velocity gradient, dU/dy. (The eddy
viscosity cannot depend upon U since that would violate Galilean invariance.)
A straightforward dimensional analysis yields Equation (3.17).

Another interesting observation follows from replacing 7, by its definition
so fhat
o |dU|dU

gt =0 VT
miz | dy dy

(3.18)
The mixing velocity, ¥miz, must be proportional to an appropriate average of v/
such as the RMS value defined by vyms = (v2)1/2. Also, Townsend (1976)
states that in most turbulent shear flows, measurements indicate

|—u"v"| == 0.4%UprmeVrms (3.19)

Consequently, if v, ~ Une0, comparison of Equations (3.15) and (3.18) shows
that the mixing-length model implies v,,s and u,,s are of the same order of
magnitude. This is generally true although ;s is usually 25% to 75% larger
than v, for typical shear flows.

At this point, we need to examine the appropriateness of the mixing-length
hypothesis in representing the turbulent transport of momentum. Because we have
made adirect analogy to the molecular transport process, we have implicitly made
the same two basic assumptions we made for molecular transport. Specifically,
we have assumed that the Boussinesq approximation holds and that the turbulence
is unaltered by the mean shear. Unfortunately, neither condition is rigorously
satisfied in practice!

Concerning the Boussinesq approximation, its applicability depends upon
the Knudsen number being small. Close to a solid boundary, for example, the
mixing length is approximately linear with distance from the surface, y. Specifi-
cally, measurements indicate that £,,;, ~ 0.41y. In the same vicinity, the velocity
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follows the well-known law of the wall [see Subsection 1.3.5], and the velocity
gradient varies inversely with y. Thus, the length L defined in Equation (3.11)
is equal to y. Consequently, the Knudsen number is of order one, i.c.,

Kn ={,;,/L~ 041 (3.20)

Hence, the linear stress/strain-rate relation of Equation (3.16) is suspect.

Concerning the effect of the mean shear on the turbulence, the assumed
lifetime of Prandtl’s lumps of fluid is €,n;s /Umiz. Reference to Equation (3.15)
shows that this time is proportional to |dU/dy|~'. Hence, the analog to Equa-
tion (3.13) is .

mix
Limiz U/ dy] (3.21)

Because we do not have £, < vmi,/|dU/dy|, Equation (3.21) tells us
that the lumps of fluid will undergo changes as they travel from points P and Q
toward ¥ = 0. This is indeed consistent with the observed nature of turbulent
shear flows. Tennekes and Lumley (1983) describe the situation by saying,
“the general conclusion must be that turbulence in a shear flow cannot possibly
be in a state of equilibrium which is independent of the flow field involved.
The turbulence is continually trying to adjust to its environment, without ever
succeeding.”

Thus, the theoretical foundation of the mixing-length hypothesis is a bit flimsy
to say the least. On the one hand, this is a forewarning that a turbulence model
built on this foundation is unlikely to possess a very wide range of applicability.
On the other hand, as the entire formulation is empirical in its essence, the
usefulness of and justification for any of its approximations ultimately lies in
how well the model performs in applications, and we defer to the applications
of the following sections as its justification.

As a pleasant surprise, we will see that despite its theoretical shortcomings,
the mixing-length model does an excellent job of reproducing measurements. It
can be easily calibrated for a specific class of flows, and the model’s predictions
are consistent with measurements provided we don’t depart too far from the
established data base used to calibrate the mixing length. Eddy-viscosity models
based on the mixing length have been fine tuned for many flows since 1925, most
notably by Cebeci and Smith (1974). Strictly speaking, the term equilibrium
is nonsensical in the context of turbulent shear flows since, as noted above,
turbulence is continually attempting to adjust to its environment, without ever
succeeding. Nevertheless, most turbulence researchers describe certain flows as
equilibrium turbulent flows. What they actually mean is a relatively simplie
flow with slowly-varying properties. Most flows of this type can be accurately
described by a mixing-length computation. In this spirit, a fitting definition of
equilibrium turbulent flow might be a flow that can be accurately described using
a mixing-length model!
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3.3 Application to Free Shear Flows

Our first applications will be to incompressible free shear flows. A flow is
termed free if it is not bounded by solid surfaces. Figure 3.2 illustrates five
different types of free shear flows, viz., the far wake, the mixing layer, the plane
jet, the round jet and the “constrained” radial jet. A wake forms downstream of
any object placed in a stream of fluid; we will consider only the two-dimensional
wake. A mixing layer occurs between two parallel streams moving at different
speeds; for the case shown in the figure, the lower stream is at rest. A plane
jet (two-dimensional) and a round jet (axisymmetric) occur when fluid is ejected
from a nozzle or orifice. A radial jet® occurs when two jets of equal strength
impinge on one another. We will analyze all three jet configurations, assuming
the jet issues into a quiescent fluid.

Ur

'\\
28
1
(¢) Plane/Round Jet (d) Constrained Radial Jet

Figure 3.2: Free shear flows.

All five of these flows approach what is known as self similarity far enough
downstream that details of the geometry and flow conditions near x = 0 become
unimportant. The velocity component U (z, y), for example, can be expressed as

Uz, y) = uo(x)F(y/d(x)) (3.22)

Similar expressions hold for 7, and v.. This amounts to saying that two velocity
profiles located at different x stations have the same shape when plotted in the
scaled form U(z,y)/uo(x) [or (Use — Uz, y))/uo(z) for the wake] versus
y/8(x). Flows with this property are also referred to as self preserving.

3We will confine our analysis to the “constrained” radial jet for which the distance between the
opposing jets is small compared to the jet nozzle diameter.
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Free shear flows are interesting building-block cases to test a turbulence
model on for several reasons. First, there are no solid boundaries so that we avoid
the complications boundaries add to the complexity of a turbulent flow. Second,
they are mathematically easy to calculate because similarity solutions exist, where
the Reynolds-averaged equations of motion can be reduced to ordinary differential
equations. This greatly simplifies the task of obtaining a solution. Third, there
is a wealth of experimental data available to test model predictions against.

The standard boundary-layer approximations hold for all five of the shear
flows considered in this section. Additionally, molecular transport of momentum
is negligible compared to turbulent transport. Since all five flows have constant
pressure, the equations of motion are (with m = j = 0 for the wake, the mixing
layer and the plane jet; m = 0 and j = 1 for the round jet; and mm = 1 and
j = 0 for the radial jet ):

19, . 19, .\
o 1 g &
Go pppit.— 112 (1 72y) (3.24)

Oz dy — yi By
where ¥ is as shown in Figure 3.2. Of course, while the equations are the same
for all five flows, boundary conditions are different. The appropriate boundary
conditions will be stated when we discuss each flow.

As a historical note, in addition to the mixing-length model, Prandt! also
proposed a simpler eddy-viscosity model specifically for free shear flows, viz.,

Vr = X[Umaz (%) — Upin (2)]6 () (3.25)

where Upqe and Upy;,, are the maximum and minimum values of mean velocity
in the layer, ¢ is the half width of the layer, and X is a dimensionless empirical
parameter that we refer to as a closure coefficient. This model is very convenient
for free shear flows because it is a function only of z by construction, and
acceptable results can be obtained if x is assumed to be constant across the
layer. Consequently, laminar-flow solutions can be generalized for turbulent
flow with, at most, minor notation changes. We leave application of this model
to the problems section. All of the applications in this section will be done using
Equations (3.16) and (3.17).

We begin by analyzing the far wake in Subsection 3.3.1. Complete details
of the similarity-solution method are given for the benefit of the reader who
has not had much experience with this method. The far wake is especially
attractive as our first application because a simple closed-form solution can be
obtained using the mixing-length model. Then, we proceed to the mixing layer
in Subsection 3.3.2. While an analytical solution is possible for the mixing layer,
numerical integration of the equations proves to be far simpler. Finally, we study
the plane, round and radial jets in Subsection 3.3.3.
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3.3.1 The Far Wake

Clearly, the flow in the wake of the body indicated in Figure 3.2(a) is symmetric
about the z axis. Thus, we solve for 0 < y < oo. Boundary conditions follow
from symmetry on the axis and the requirement that the velocity approach its
freestream value far from the body. Hence,

Uz,y) > Uss a8 y — 00 (3.26)
U _o at y=0 (3.27)
dy

The classical approach to this problem is to linearize the momentum equation,
an approximation that is strictly valid only in the far wake [Schlichting-Gersten
(1999)]. Thus, we say that

U(z,y) = U i— 1 (3.28)

where || < Uy . The linearized momentum equation and boundary conditions
become

0t OTzy
Voo 3z =~ 30 (3.29)
i(z,y) =0 as y— o0 (3.30)
du
"a_y”o at y=0 (3.31)

There is also an integral constraint that must be satisfied by the solution. If
we consider a control volume surrounding the body and extending to infinity,
conservation of momentum leads to the following requirement [see Schlichting-
Gersten (1999)],

/ pU(Uso — U dy = %D (3.32)
0

where D is the drag of the body per unit width.
We use the mixing-length model to specify the Reynolds shear stress, 7.,
which means we write
ou| Ou
dy| Oy
Finally, to close our set of equations, we assume the mixing length is pro-
portional to the half-width of the wake, 6(x) [see Figure 3.2(a)]. Thus, we say
that

_ g2
Tey = miz

(3.33)

Virigz =+ GOLE) (3.34)
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where « is a closure coefficient. Our fondest hope would be that the same value
of o works for all free shear flows, and is independent of y/6. Unfortunately,
this is not the case, which means the mixing-length model must be recalibrated
for each type of shear flow.

To obtain the similarity solution to Equations (3.29) through (3.34), we pro-
ceed in a series of interrelated steps. The sequence is as follows.

1. Assume the form of the solution.

2. Transform the equations of motion.

3. Transform the boundary conditions and the integral constraint.

4. Determine the conditions required for existence of the similarity solution.

5. Solve the resulting ordinary differential equation subject to the transformed
boundary conditions.

In addition to these 5 steps, we will also determine the value of the closure
coefficient « in Equation (3.34) by comparison with experimental data.

Step 1. We begin by assuming the similarity solution can be written in terms
of an as yet unknown velocity scale function, u,(z), and the wake half width,
§(x). Thus, we assume that the velocity can be written as

i(z,y) = uo(x) F(n) (3.35)
where the similarity variable, 1, is defined by
n=1y/d(z) (3.36)

Step 2. In order to transform Equation (3.29), we have to take account
of the fact that we are making a formal change of dependent variables. We
are transforming from (z,y) space to (x,7) space which means that derivatives
must be transformed according to the chain rule of calculus. Thus, derivatives
transform according to the following rules. Note that a subscript means that
differentiation is done holding the subscripted variable constant.

=), = &), (&),
- (&), (&), ).

_ [(B\ _f) (8
- (&), 7 (&). @3
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on
1 17, _
= — (= 3.
i (7). 639
A prime denotes ordinary differentiation so that §'(x) = dé/dzx in Equa-

tion (3.37). We now proceed to transform Equation (3.29). For example, the
derivatives of 4 are

241 u,d' dF

o i gyl P e TR

35 — Yo (n) 3 ”dn (3.39)
at U, dF
5 60 =0

Proceeding in this manner for all terms in Equation (3.29) and using the mixing-
length prescription for the Reynolds stress leads to the transformed momentum

equation.

! !
Usobtt, U’ dF o d (d_F dF) -

F(n) — — =a— hesll
() Ug " an * dn \|dn| dn
Step 3. Clearly, y — o< corresponds to 7 — oo and y — 0 corresponds to

n -+ 0. Thus, the boundary conditions in Equations (3.30) and (3.31) transform
to

w2

Fn)—0 a 7> (3.42)

dF
— =0 at n=0 (3.43)

dn

and the integral constraint becomes
oo
D

Fnydn = gr———s A44)
fo (n) dn = 3 ST (3.44)

Step 4. In seeking a similarity solution, we are attempting to make a sepa-
ration of variables. The two terms on the left-hand side of Equation (3.41) have
coefficients that, in general, vary with z. Also, the right-hand side of Equa-
tion (3.44) is a function of . The condition for existence of the similarity
solution is that these three coefficients be independent of x. Thus, we require
the following threc conditions.

Uibn Bt D
© 3 = - = 1 ]
T - Uo = 2pU oo 160 (3.45)
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The quantities a; and a; must, of course, be constant. Note that we could
have introduced a third constant in the integral constraint, but it is unneces-
sary (we, in effect, absorb the third constant in 6). The solution to these three
simultaneous equations is simply

~ {asDx

Uo(T) = = (3.47)

a) = —as (348)

Step 5. Finally, we expect that F'(%) will have its maximum value on the
axis, and then fall monotonically to zero approaching the freestream. If this
is true, then I"'(n) will be negative for all values of n and we can replace its
absolute value with —F’(#). Taking account of Equations (3.45) through (3.48),
the momentum equation now simplifies to

azd% [(F)?] — ag(nF' + F) =0 (3.49)

The second term is a perfect differential so that Equation (3.49) can be rewritten
as

d
o [0®(F')? —aynF] =0 (3.50)
Integrating once and imposing the symmetry condition at = 0 [ Equation (3.43)]
yields
dF
(I—d“; = —\/GQT]’F (3.51)

where we observe that F'(n) is everywhere less than zero. Integrating once more,
we find that the solution for F(n) is

Y2
F(n) = C* [1 = (n/n,)?] (352)
where C is a constant of integration and 7le 18 given by

e = (3aC/ /az )*/3 (3.53)

This solution has a peak value at = 0 and decreases monotonically to zero
as 1 — 7n.. It then increases without limit for n > 1,. The only way we can
satisfy the far field boundary condition [Equation (3.42)] is to use Equation (3.52)
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for 0 < 5 < 7, and to use the trivial solution, F'(r7) = 0, for values of 7 in excess
of 7.

With no loss of generality, we can set 7. = 1. To understand this, note that
n/m. = y/[n.0(x)]. Hence, by setting . = 1 we simply rescale the # coordinate
so that §(z) is the wake half width as originally planned. Therefore,

3al = (/az (3.54)

Finally, imposing the integral constraint, Equation (3.44), yields an equation
for the constant C. Performing the integration, we have

1
/ C?1—n3%2%dy = 25 i (3.55)
0 20
Therefore,
C =+1v20/3 = 1.491 (3.56)
and

a = ~\/az/20 (3.57)

If the closure coefficient @ were known, our solution would be completely
determined at this point with Equation (3.57) specifying ao. This is the nature
of an imcomplete turbulence model. The coefficient o is unknown because the
mixing length [Equation (3.34)] is unknown a priori for this flow. To complete
the solution, we appeal to experimental data [c.f. Schlichting-Gersten (1999)],
which show that the wake half width grows according to

§(z) ~ 0.805 pgi;o (3.58)
Comparison of Equations (3.46) and (3.58) shows that the value of az is
a; = 0.648 (3.59)
The value of the coefficient « then follows from Equation (3.57), i.e.,
a=0.18 (3.60)

Collecting all of this, the final solution for the far wake, according to the
mixing-length model is

Ul y) = Uso — 1.38,| 2 {1 - (3;/(5)3/2]2 (3.61)
o
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Figure 3.3: Comparison of computed and measured far-wake velocity profiles:
— Mixing length,; e Fage and Fallmer (1932); o Weygandt and Mehta (1995).

where J(z) is given by Equation (3.58). Figure 3.3 compares this profile with
data of Fage and Falkner (1932) and the slightly asymmetrical wake data of Wey-
gandt and Mehta (1995). As shown, the mixing-length model, once calibrated,
does an excellent job of reproducing measured values. This solution has an in-
teresting feature that we will see in many of our applications. Specifically, we
have found a sharp turbulent/nonturbulent interface. This manifests itself in the
nonanalytic behavior of the solution at y/é§ = 1, i.e., all derivatives of U above
82U /8y? are discontinuous at 4/ = 1. Measurements confirm existence of such
interfaces in all turbulent flows. However, the time-averaged interface is con-
tinuous to high order, being subjected to a near-Gaussian jitter. Time averaging
would thus smooth out the sharpness of the physical interface. Consistent with
this smoothing, we should actually expect analytical behavior approaching the
freestream. Hence, the mixing-length model is predicting a nonphysical feature.

3.3.2 The Mixing Layer

For the mixing layer, we consider two parallel streams with velocities I/; and
Us. By convention, the stream with velocity U, lies above y = 0 and U; > Us.
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The boundary conditions are thus
Ulz,y) - U1 as y— +o0 (3.62)
Ulz,y) - U; as y— —o0 (3.63)

The most convenient way to solve this problem is to introduce the stream-
function, ¢. The velocity components are given in terms of ¢/ as follows.

oY oy
=g and V = P (3.64)
Equation (3.23) is automatically satisfied and the momentum equation be-
comes
%ﬂ“%@“ﬁ £2 5_22 ?i"’{), (3.65)
Oy dxdy Oz Oy? ~ Oy | ™| 9y? | 9y '
The boundary conditions on 4 are
o — U, as Yy — +o0o (3.66)
Oy
% — Us as Yy — —00 (3.67)
dy

Because the velocity is obtained from the streamfunction by differentiation,
1) involves a constant of integration. For the sake of uniqueness, we can specify
an additional boundary condition on %, although at this point it is unclear where
we should impose the extra boundary condition. The choice will become obvious
when we set up the similarity solution. As with the far wake, we assume

V(z,y) = Yo(z)F(n) (3.68)
where the similarity variable, 7, is defined by
n=y/é(x) (3.69)

As can be verified by substituting Equations (3.68) and (3.69) into Equa-
tion (3.65), a similarity solution exists provided we choose

Volz) = AUz (3.70)
5{z) = Ax (3.71)

where A is a constant to be determined. Using Equation (3.34) to determine the
mixing length, after some algebra Equation (3.65) transforms to

B

of = [(F")'] + AFF" =0 (3.72)
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Note that we remove the absolute value sign in Equation (3.65) because we
expect a solution with U /8y = 8%+ /0y? > 0. As an immediate consequence,
we can simplify Equation (3.72). Specifically, expanding the first term leads to
the following linear equation for the transformed streamfunction, F (n).

d*F
20°—= + AF =0 (3.73)
dn’

To determine the constant of integration in the streamfunction, our assumed
form for 3 [Equation (3.68)] is consistent with letting F'(n) vanish at n = 0.
This is known as the dividing streamline. Thus, our boundary conditions are

— =1 as 1 — +oo (3.74)
dn
dF
%— — Us /U5 as o — — (3.75)

F(0) =0 (3.76)

For simplicity, we consider the limiting case Us = 0. This problem can be
solved in closed form using elementary methods. Unfortunately, the solution is
a bit complicated. Furthermore, as with the far-wake solution, the mixing-length
model predicts a sharp turbulent/nonturbulent interface and it becomes a rather
difficult chore to determine a straightforward relationship between the closure
coefficient o and the constant A, the latter being the value of y/z at the interface.
The easier way to proceed is to solve the equation numerically for various values
of o?/A and compare with measurements to infer the value of a. Proceeding
in this manner with Program MIXER (sce Appendix C), optimum agreement
between computed and measured {Liepmann and Laufer (1947)] velocity profiles
occurs if we choose

A=0247 and «a=0071 (Mixing Layer) (3.77)

This value of « is nearly identical to the value (0.070) quoted by Launder
and Spalding (1972). Figure 3.4 compares computed and measured velocity
profiles. The traditional definition of spreading rate, &', for the mixing layer is
the difference between the values of y/z where (I — Us)2/ (U, ~ Us)? is 9/10
and 1/10. The values of 4 and « have been selected to give a spreading rate of

& =0.115 (3.78)

which is within the range of measured values, 1.e., 0.105 to 0.120. While the
computed velocity goes to zero more rapidly than measured on the low speed
side of the mixing layer, the overall agreement between theory and experiment
is remarkably good.
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Figure 3.4: Comparison of computed and measured velocity profiles for a mixing
layer: — Mixing length; ¢ Liepmann and Laufer (1947).

3.3.3 The Jet

We now analyze the plane jet, the round jet and the radial jet. Referring to
Figures 3.2(c) and 3.2(d), we assume the jet issues into a stagnant fluid. The
jet entrains fluid from the surroundings and grows in width downstream of the
origin. Equations (3.23) and (3.24) govern the motion with m = 7 = 0 for the
plane jet, m = 0, j = 1 for the round jet and m = 1, j = O for the radial jet.
As with the far wake, we take advantage of the symmetry about the x axis and
solve for 0 < y < oo. The boundary conditions for all three cases are

U(x,y) -0 as y— 00 (3.79)
O o & =0 (3.80)
Oy

To insure that the momentum in the jet is conserved, our solution must satisfy
the following integral constraint:

. S . 1
wm“xmfﬂ Uy dy = sl (3.81)

where J is the momentum flux per unit mass, or, specific momentum flux.
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To solve, we introduce the streamfunction, which can be generalized to ac-
count for the axisymmetry of the round and radial jets, i.e.,

P U = ot and ™YV = 0% (3.82)
dy ox

The momentum equation thus becomes

gy 30 0 (x_maw) 8 0 (y, aw)

Oy Oz Oy Oz Oy Iy
8. & ( _.00\| 8 [ _. ou
= — [yff2 . |__ iy | St _

Assuming a similarity solution of the form given in Equations (3.68) and (3.69),
the appropriate forms for 1,(z) and 6(x) are

JAFHL pmtj+1
Yo(@) = \/ — (3.84)
dz) = Ax (3.85)

As with the mixing layer, A is the value of y/x at the interface between the
turbulent and nonturbulent interface. We will select the value of the mixing-
length constant « by trial and error to provide as close a match to measurements
as possible. For the jet, we expect to have U /8y < 0. Using this fact to replace
the absolute value in Equation (3.83) with a minus sign, the following ordinary
differential equation for the transformed streamfunction, I'(n), results.

; 2 - r
052??3. i E = MAF 5 (3.86)
dn \ n? 2 7

This equation must be solved subject to the following conditions.

F(0)y=0 (3.87)
1
—wg — 0 as Yy — 00 (3.88)
7 dn .
d {1dF
d_?; [};f E] as y—0 (3.89)

o "2
fo (‘Z j) dn = 1 (3.90)
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Doing a numerical solution of Equation (3.86) subject to Equations (3.87)
through (3.90), and comparing with experiment yields

A=0.246 and a=0.098 (Plane Jet) (3.91)
A=0233 and a=0.080 (Round Jet) (3.92)
A=0238 and «a=0.155 (Radial Jet) (3.93)

Values for the mixing-length coefficient, «, are about 8% larger than correspond-
ing values (0.090 and 0.075) quoted by Launder and Spalding (1972) for plane
and round jets respectively, which is within the bounds of experimental error.
Values quoted in Equations (3.91) — (3.93) have been obtained using Program
JET (see Appendix C). Figures 3.5, 3.6 and 3.7 compare computed and mea-
sured [Bradbury (1965), Heskestad (1965), Wygnanski and Fiedler (1969), Rodi
(1975), Witze and Dwyer (1976)] velocity profiles for plane, round and radial
jets. Somewhat larger discrepancies between theory and experiment are present
for plane and radial jets than for the round jet.

The traditional definition of spreading rate, ', for the jet is the value of y/x
where the velocity is half its peak value. Experimental data indicate §' is between
0.100 and 0.110 for the plane jet, between 0.086 and 0.095 for the round jet and
between 0.096 and 0.110 for the radial jet. The mixing-length computational
results shown in Figures 3.5, 3.6 and 3.7 correspond to

'0.100 (Plane Jet)
5 ={ 0.086 (Round Jet) (3.94)
0.106 (Radial Jet)

This concludes our application of the mixing-length model to free shear flows.
A few final comments will help put this model into proper perspective. We
postulated in Equation (3.34) that the mixing length is proportional to the width of
the shear layer. Our theory thus has a single closure coefficient, v, and we have
found that it must be changed for each flow. The following values are optimum
for the five cases considered. While we have obtained fairly close agreement
between computed and measured velocity profiles, we have not predicted the

| Flow ‘ s |
Far Wake 0.180
Mixing Layer | 0.071
Plane Jet 0.098
Round Jet 0.080
Radial Jet 0.155
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Figure 3.5: Comparison of computed and measured velocity profiles for the
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Figure 3.7: Comparison of computed and measured velocity profiles for the
radial jet: — Mixing length; o Witze and Dwyer (1976).

spreading rate. In fact, we established the value of our closure coefficient by
forcing agreement with the measured spreading rate. If we are only interested in
far-wake applications or round jets we might use this model with the appropriate
closure coefficient for a parametric study in which some flow property might be
varied. However, we must proceed with some degree of caution knowing that
our formulation lacks universality.

3.4 Modern Variants of the Mixing-Length Model

For free shear flows, we have seen that the mixing length is constant across the
layer and proportional to the width of the layer. For flow near a solid boundary,
turbulence behaves differently and, not too surprisingly, we must use a different
prescription for the mixing length. Prandtl originally postulated that for flows
near solid boundaries the mixing length is proportional to the distance from the
surface. As we will demonstrate shortly, this postulate is consistent with the
well-known law of the wall, which has been observed for a wide range of wall-
bounded flows over roughly the nearest 10% of the flow width from the surface
(see Subsection 1.3.5).

Figure 3.8 shows a typical velocity profile for a turbulent boundary layer.
The quantity y*, defined in Equation (1.21), is dimensionless distance from the
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Figure 3.8: Bypical velocity profile for a turbulent boundary layer.

surface. As discussed in Subsection 1.3.5, three distinct regions are discernible,
viz., the viscous sublayer (or “viscous wall region”), the log layer and the defect
layer. By definition, the log layer is the portion of the boundary layer sufficiently
close to the surface that inertial terms can be neglected yet sufficiently distant that
the molecular, or viscous, stress is negligible compared to the Reynolds stress.
This region typically lies between y* = 30 and y = 0.15, where the value of y*
at the upper boundary is dependent upon Reynolds number. Of particular interest
to the present discussion, the law of the wall holds in the log layer. The viscous
sublayer is the region between the surface and the log layer. Close to the surface,
the velocity varies approximately linearly with y*, and gradually asymptotes to
the law of the wall for large values of . The defect layer lies between the log
layer and the edge of the boundary layer. The velocity asymptotes to the law
of the wall as y/§ — 0, and makes a noticeable departure from the law of the
wall approaching the freestream. Chapter 4 discusses these three layers in great
detail.

From a mathematician’s point of view, there are actually only two layers,
viz., the viscous sublayer and the defect layer, and they overlap. In the parlance
of singular-perturbation theory (Appendix B), the defect layer is the region in
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which the outer expansion is valid, while the viscous sublayer is the region where
the inner expansion holds. In performing the classical matching procedure, we
envision the existence of an overlap region, in which both the viscous sublayer
and defect-layer solutions are valid. In the present context, matching shows that
U varies logarithmically with y in the overlap region, which we choose to call
the log layer. Strictly speaking, the log layer is not a distinct layer, but rather
the asymptotic limit of the inner and outer layers. Nevertheless, we will find the
log layer to be useful because of the simplicity of the equations of motion in the
layer.

Consider an incompressible, constant-pressure boundary layer. The flow is
governed by the standard boundary-layer equations.

U BV

B i e i e
3:1:_q+ v dy Oy LV oy

Because the convective terms are negligible in the log layer, the sum of the
viscous and Reynolds shear stress must be constant. Hence, we can say

U ”
PLI = W (a_) =0 g2 (3.97)
Oy O/, P

U _oU 9T aU_W] (3.96)

where subscript w denotes value at the wall and u, = /7, /p is known as the
friction velocity. As noted above, the Reynolds stress is much larger than the
viscous stress in the log layer. Consequently, according to the mixing-length

model,
U\’
Lot (8—,9“) ~ u7 (3.98)
If we say that the mixing length is given by

Criw = KY (3.99)
where « is a constant, Equation (3.98) can be integrated immediately to yield

U =~ %eny + constant (3.100)

Finally, recall the dimensionless velocity and normal distance defined in Equa-
tion (1.21), which we repeat here for convenience, viz.,

U u
and yt ="

+ —
Ur 1%

Il

" (3.101)
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Introducing Equation (3.101) into Equation (3.100) yields the classical law of
the wall, viz.,

1
Ut =~ ;G—Eny"' +C (3.102)

The coefficient « is known as the Karman constant, and C is a dimensionless
constant. Coles and Hirst (1969) found from correlation of experimental data
for a large number of attached, incompressible boundary layers with and without

pressure gradient that
k=~ 0.41 (3.103)

C ~5.0 (3.104)

Note that the mixing-length formula, Equation (3.98) with Equation (3.99),
yields the same result as given by dimensional analysis alone [cf. Equations (1.18)
and (1.19)].

Using Equation (3.99) all the way from y = 0 to y = 4, the mixing-length
model fails to provide close agreement with measured skin friction for boundary
layers. Of course, not even Prandtl expected that ¢,,;; = xy throughout the
boundary layer. Since the mixing length was first postulated, considerable effort
has been made aimed at finding a suitable prescription for boundary-layer com-
putations. Several key modifications to Equation (3.99) have evolved, three of
which deserve our immediate attention. See Schlichting-Gersten (1999) or Hinze
(1975) for a more-complete history of the mixing-length model’s evolution.

The first key modification was devised by Van Driest (1956) who proposed
that the mixing length should be multiplied by a damping function. Specifically,
Van Driest proposed, with some theoretical support but mainly as a good fit to
data, that the mixing length should behave according to

iz = oy [1 — 7V /47 (3.105)

where the constant A7 is
AF =26 (3.106)

Aside from the primary need to improve predictive accuracy, the Van Driest
modification improves our description of the Reynolds stress in the limit y — 0.
With £,,;. given by Equation (3.99), the asymptotic behavior of the Reynolds
shear stress is 75, ~ y? as y — 0. However, the no-slip boundary condition tells
us that »' = 0 at y = 0. Since there is no a priori reason for du’ /3y to vanish
at the surface, we conclude that u’ ~ y as y — 0. Since the fluctuating velocity
satisfies the continuity equation, we also conclude that v/ ~ y?. Hence, the
Reynolds shear stress must go to zero as y3. Results of DNS studies (Chapter
8) indicate that indeed 7, ~ y* as y — 0. However, as noted by Hinze (1975),
the coefficient of the y® term in a Taylor series expansion for T2y Must be very
small as measurements are as close to 7, ~ y* as they are to 7., ~ > when
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y — 0. In the limit of small y the Van Driest mixing length implies 7., goes to
zero as y* approaching the surface.

The second key modification was made by Clauser (1956) who addressed
the proper form of the eddy viscosity in the defect layer. Similar to Prandtl’s
special form of the eddy viscosity for wake flows given in Equation (3.25),

Clauser specifies that
vr, = alUed" (3.107)

where vy, is the kinematic eddy viscosity in the outer part of the layer, §* is the
displacement thickness, U, is the velocity at the edge of the layer, and « is a
closure coefficient.

In a similar vein, Escudier (1966} found that predictive accuracy is improved
by limiting the peak value of the mixing length according to

where 9§ is boundary-layer thickness. Escudier’s modification is similar to the
approximation we used in analyzing free shear flows [Equation (3.34)], although
the value 0.09 is half the value we found for the far wake.

Using an eddy viscosity appropriate to wake flow in the outer portion of the
boundary layer also improves our physical description of the turbulent boundary
layer. Measurements indeed indicate that the turbulent boundary layer exhibits
wake-like characteristics in the defect layer. As pointed out by Coles and Hirst
(1969), “a typical boundary layer flow can be viewed as a wake-like struc-
ture which is constrained by a wall.” Figure 3.9 illustrates Coles’ notion that
the defect layer resembles a wake flow while the wall constraint is felt primar-
ily in the sublayer and log layer. Strictly speaking, turbulence structure differs
a lot between a boundary layer and a wake. Hence, the terminology “wake
component’ is misleading from a conceptual point of view. Nevertheless, the
mathematical approximations that yield accurate predictions for a wake and for
the outer portion of a turbulent boundary layer in zero pressure gradient are
remarkably similar.

The third key modification is due to Corrsin and Kistler (1954) and Kle-
banoft (1954) as a corollary result of their experimental studies of intermittency.
They found that approaching the freestream from within the boundary layer, the
flow 1s not always turbulent. Rather, it is sometimes laminar and sometimes
turbulent, i.e., it is intermittent. Their measurements indicate that for smooth
walls, the eddy viscosity should be multiplied by

Frio(y: 8) = [1 +55 (%)b] (3.109)

where d is the boundary-layer thickness. This provides a measure of the effect
of intermittency on the flow.



3.4. MODERN VARIANTS OF THE MIXING-LENGTH MODEL 79

Y

Y

H“":QL__':V Y v
r
N

i > >

|

: // | __‘/ ]
Wall Wake Composite

Component Component Profile

S~

Y

N
—

Figure 3.9: Coles’ description of the turbulent boundary layer [From Coles
and Hirst (1969) — Used with permission.]

All of these modifications have evolved as a result of the great increase in
power and accuracy of computing equipment and measurement techniques since
the 1940’s. The next two subsections introduce the two most noteworthy models
in use today that are based on the mixing-length concept. Both include variants
of the Van Driest, Clauser, and Klebanoff modifications. Although it is not used
in these two models, the Escudier modification has also enjoyed great popularity.

As a final comment, we have introduced two new closure coefficients, A7 and
«, and an empirical function, Fi,.,. As we continue in our journey through this
book, we will find that the number of such coefficients and functions increases
as we attempt to describe more and more features of the turbulence.

3.4.1 Cebeci-Smith Model

The Cebeci-Smith model [Smith and Cebeci (1967)] is a two-layer model with
vr given by separate expressions in each layer. In terms of the normal distance
from the nearest solid boundary, y, the eddy viscosity is

_J Vr Y < Um
uT“{ ek (3.110)

where y,, is the smallest value of y for which Vr, = Vr,. The values of v, in
the inner layer, v, , and the outer layer, v, are computed as follows.
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Inner Layer:

auN?  (ovi2]Y”
vz, = iz (*55) + (E) (3.111)
Comie = KY [1 - e—y”*‘*] (3.112)
Outer layer:
vr, = aUel, Fri(y; 0) (3.113)
Closure Coefficients:
P/dp1—1/2
k=0.40, a=00168, AT =26 [1 3§ ydpizx] (3.114)
T

The function Fy,., is the Klebanoff intermittency function given by Equa-
tion (3.109), U, is boundary-layer edge velocity. and J;; is the velocity thickness
defined by

)
5 = / (1—U/U.)dy (3.115)
0

Note that velocity thickness is identical to displacement thickness for incom-
pressible flow. The coefficient A* differs from Van Driest’s value to improve
predictive accuracy for boundary layers with nonzero pressure gradient.* The
prescription for v, above is appropriate only for two-dimensional flows; for
three-dimensional flows, it should be proportional to a quantity such as the mag-
nitude of the vorticity vector. There are many other subtle modifications to
this model for specialized applications including surface mass transfer, stream-
line curvature, surface roughness, low Reynolds number, etc. Cebeci and Smith
(1974) give complete details of their model with all of its variations.

The Cebeci-Smith model is especially elegant and easy to implement. Most
of the computational effort, relative to a laminar case, goes into computing the
velocity thickness. This quantity is readily available in boundary-layer computa-
tions so that a laminar-flow program can usually be converted to a turbulent-flow
program with just a few extra lines of instructions. Figure 3.10 illustrates a typ-
ical eddy viscosity profile using vy, between y = 0 and y = ym, and vy, for
the rest of the layer. At Reynolds numbers typical of fully-developed turbulence,
matching between inner and outer layers occurs well into the log layer.

4However, the Van Driest value should be used in fully-developed pipe flow, for which the dP/dx
correction yields imaginary A%
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We can estimate the value of y, as follows. Since we expect the matching
point to lie in the log layer, the exponential term in the Van Driest damping
function will be negligible. Also, the law of the wall [Equation (3.100)] tells us
AU /By =~ u,/(ky). Thus,

Ur .
2T~ kury = woyt (3.116)
KY
Since the matching point also lies close enough to the surface that we can say
y/0 < 1, the Klebanoff intermittency function will be close to one so that (with
05 = 0%):

Vr, R nQy

vr, 22 alU0" = avReg~ (3.117)

Hence, equating vy, and v, , we find
Y ~ = Res- ~ 0.042Res. (3.118)
K

Assuming a typical turbulent boundary layer for which Res~ ~ 10%, the matching
point will lie at 3 ~ 420.

3.4.2 Baldwin-Lomax Model

The Baldwin-Lomax model [Baldwin and Lomax (1978)] was formulated for
use in computations where boundary-layer properties such as 6, 4 and U, are
difficult to determine. This situation often arises in numerical simulation of
separated flows, especially for flows with shock waves. Like the Cebeci-Smith
model, this is a two-layer model. The eddy viscosity is given by Equation (3.110),
and the inner and outer layer viscosities are as follows.
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Inner Layer:

v ies o) (3.119)
A—— [1 - e“y+f’Ao+] (3.120)
Outer Layer:
Vr, = aCchwakeFKteb(y; ymax/CKleb) (3.121)
Fyake = min [ maz Fmaz; CwkYmaz Ugif/Fma:c} (3.122)
Frae = 2 | max(fmia|wl) (3.123)
maz = P iz || 5

where Ymaqz is the value of y at which ¢,,;,|w| achieves its maximum value.

Closure Coefficients:’®

x = 0.40, = 0.0168, Al =26 }

Cop=16; Cries =03, Cuyp=1 @:124)

The function Fy,., is Klebanoff’s intermittency function [ Equation (3.109)] with
é replaced bY Ymaz/Ckies, and w is the magnitude of the vorticity vector, i.e.,

2 2 271/2

“= dr Oy g dy Oz * Oz Oz @3
for fully three-dimensional flows. This simplifies to w = |0V /dx — U /Dy|
in a two-dimensional flow. If the boundary layer approximations are used in a
two-dimensional flow, then w = |8U/dyl.

Ugsy is the maximum value of U for boundary layers. For free shear layers,
Uygis is the difference between the maximum velocity in the layer and the value
of U at ¥ = Ymas. For more general flows, it is defined by

Ugg = (VU2 +V2+ w2) (VR vEEwe) (3.126)

max Y=Yrmax

The primary difference between the Baldwin-Lomax and Cebeci-Smith mod-
els is in the outer layer, where the product Cp Fyqxe replaces Ued;;. To avoid the

5Personal communication between Dr. Lomax and the author of this text has determined that the
original Baldwin-Lomax paper inadvertently: (a) assigns a value of C'y,; = 0.25; (b) defines Uyg;s
as the difference between the maximum and minimum velocities,
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need to locate the boundary-layer edge, the Baldwin-Lomax model establishes
the outer-layer length scale in terms of the vorticity in the layer. On the one hand,
in using Fyake = Ymaz Fmaz, We in effect replace & by 2, w/U,. On the
other hand, using F g1 = kaymngif/me effectively replaces the shear
layer width, 4, in Prandtl’s eddy-viscosity model [Equation (3.25)] by Ugis [ |w|.

For boundary-layer flows, there is very little difference between the predic-
tions of the Baldwin-Lomax and Cebeci-Smith models. This indicates that the
prescription for determining the outer-layer length scale based on the vorticity
and distance from the surface [cf. Equations (3.122) and (3.123)] is entirely
equivalent to the velocity thickness, 8. For more-complicated flows, such as
those involving separation, the Baldwin-Lomax model provides an outer length
scale that is well defined for most flows. By contrast, &%, will generally be
negative for a separated flow, and thus is an unsuitable length scale.

However, the Baldwin-Lomax model prescription for computing an outer
length scale can fail when the vorticity is nonvanishing above the boundary
layer. This will occur, for example, on slender bodies at angle of attack, where
regions of crossflow separation dominate [e.g., Degani and Schiff (1986) or Gee,
Cummings and Schiff (1992)]. In this type of flow, the function F(y) can
exhibit more than one relative maximum as illustrated in Figure 3.11. Using a
peak beyond the viscous region can lead to nonphysically large eddy viscosity
values that lead to gross distortion of the computed flowfield. To eliminate this
problem, Degani and Schiff (1986} have devised a procedure that automatically
selects the peak value of F(y) within the viscous region. While the Degani-
Schiff modification improves model predictions for separated flows, we will
see in Section 3.6 that neither the Cebeci-Smith nor the Baldwin-Lomax model
embodies a sufficient physical foundation to warrant application to such flows.

Ymax Ymoax

Frn,a:c F(’U) Fmo,ﬂ: 11‘(9)
(@) )

Figure 3.11: The function F(y) for: (a) a conventional boundary layer; (b) a
boundary layer with nonzero freestream vorticity.
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Thus, this type of adjustment to the model reflects no added physical insight, but
rather stands as a purely empirical correction.

As a final comment, while Equation (3.124) implies this model has six closure
coefficients, there are actually only five. The coefficient C¢, appears only in
Equation (3.121) where it is multiplied by o, so aC,,, is actually a single constant.

3.5 Application to Wall-Bounded Flows

We turn our attention now to application of the Cebeci-Smith and Baldwin-
Lomax models to wall-bounded flows, i.e., to flows with a solid boundary. The
no-slip boundary condition must be enforced for wall-bounded flows, and we
expect to find a viscous layer similar to that depicted in Figure 3.8. This section
first examines two internal flows, viz., channel flow and pipe flow. Then, we
consider external flows, i.e., boundary layers growing in a semi-infinite medium.

3.5.1 Channel and Pipe Flow

Like the free shear flow applications of Section 3.3, constant cross-section chan-
nel and pipe flow are excellent building-block cases for testing a turbulence
model. Although we have the added complication of a solid boundary, the mo-
tion can be described with ordinary differential equations and is therefore easy
to analyze mathematically. Also, experimental data are abundant for these flows.

The classical problems of flow in a channel, or duct, and a pipe are the ideal-
ized case of an infinitely long channel or pipe (Figure 3.12). This approximation
is appropriate provided we are not too close to the inlet of the channel/pipe so

Boundary-layer edge

Fully-developed
flow

Figure 3.12: Fully-developed flow in a pipe or channel with the vertical scale
magnified.
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that the flow has become fully-developed. For turbulent flow in a pipe, flow

asymptotes to full development at a distance ¢, downstream of the inlet given
approximately by [cf. Schlichting-Gersten (1999)]

i

== 4.4Re/" (3.127)

where Re, is Reynolds number based on the pipe diameter {or channel half

height). Thus, for example, the entrance length, £., for flow in a pipe with

Rep, = 10° is about 30 pipe diameters. Because, by definition, properties no

longer vary with distance along the channel/pipe, we conclude immediately that

i) =0 (3.128)
Ox
Denoting distance from the center of the channel or pipe by r, conservation
of mass is U 18
SO G I L
3 75 [77V] =0 (3.129)

where j = 0 for channel flow and j = 1 for pipe flow. In light of Equa-
tion (3.128), we see that V does not vary across the channel/pipe. Since V
must vanish at the channel/pipe walls, we conclude that V —= 0 throughout the
fully-developed region. Hence, for both channel and pipe flow, the inertial terms
are exactly zero, so that the momentum equation simplifies to

_dP 1 d i du —
0= 7 + - {r (,u - v)] (3.130)

In fully-developed flow pressure gradient must be independentof z, and if V = 0,
it is also exactly independent of 7. Hence, we can integrate once to obtain

dUu — T dP
po = Uy =TT 14z (3.131)

Now, the Reynolds stress vanishes at the channel/pipe walls, and this estab-
lishes a direct relationship between the pressure gradient and the shear stress at
the walls. If we let R denote the half-height of the channel or the radius of the
pipe, applying Equation (3.131) at » = R tells us that

R dP
J+1dx

T’U’} S

(3.132)

Hence, introducing the friction velocity, u,, the momentum equation for chan-
nel/pipe flow simplifies to the following first-order, ordinary differential equation.
dU g 7

B = pu'v = —pu — (3.133)
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Noting that both channel and pipe flow are symmetric about the centerline,
we can obtain the complete solution by solving Equation (3.133) with r varying
between 0 and R. It is more convenient however to define y as the distance from
the wall so that

y=R-—r (3.134)

Hence, representing the Reynolds stress in terms of the eddy viscosity, i.e.,
—pu'v’ = prdU/dy, we arrive at the following equation for the velocity.

au Y
(u+pr) g = i (1- ) (3.135)

Finally, we introduce sublayer-scaled coordinates, Ut and y*, from Equa-
tion (3.101), as well as p; = po/p. This results in the dimensionless form of
the momentum equation for channel flow and pipe flow, viz.,

dU+ +
(1+n¥)@¢= (1— %) (3.136)

where

Rt =w,R/v (3.137)

Equation (3.136) must be solved subject to the no-slip boundary condition at the
channel/pipe wall. Thus, we require

Ut(0)=0 (3-138)

At first glance, this appears to be a standard initial-value problem that can, in
principle, be solved using an integration scheme such as the Runge-Kutta method.
However, the problem is a bit more difficult, and for both the Cebeci-Smith and
Baldwin-Lomax models, the problem must be solved iteratively. That is, for the
Cebeci-Smith model, we don’t know U, and 4 a priori. Similarly, with the
Baldwin-Lomax model, we don’t know the values of Ugis and y,q, until we
have determined the entire velocity profile. This is not a serious complication
however, and the solution converges after just a few iterations.

The equations for channe! and pipe flow can be conveniently solved using
a standard over-relaxation iterative procedure. Program PIPE (see Appendix C)
yields a numerical solution for several turbulence models, including the Cebeci-
Smith and Baldwin-Lomax models.

Figure 3.13 compares computed two-dimensional channel-flow profiles with
Direct Numerical Simulation (DNS) results of Mansour, Kim and Moin (1988)
for Reynolds number based on channel height and average velocity of 13750.
As shown, the Cebeci-Smith and Baldwin-Lomax velocity profiles are within
8% and 5%, respectively, of the DNS profiles. Computed Reynolds shear stress
profiles for both models differ from the DNS profiles by no more than 2%.
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Computed skin friction for both models differs by less than 5% from Halleen

and Johnston’s (1967) correlation of experimental data, viz.,

¢y = 0.0706 Re; 174

where the skin friction and Reynolds number are based on the average velocity
across the channel and the channel height H, ie., c; = 7, /{3pUZ,,) and on

Reynolds number, Rey — UypgH /v
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Figure 3.13: Comparison of computed and measured channel-flow properties,
Rey = 13750, —— Baldwin-Lomax model; - - - Cebeci-Smith model: o Mansour

et al. (DNS); o Halleen-Johnston correlation.
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Figure 3.14 compares model predicted pipe-flow properties with the experi-
mental data of Laufer (1952) for Reynolds number based on pipe diameter and
average velocity of 40000. Baldwin-Lomax velocity and Reynolds shear stress
differ from measured values by no more than 3%. As with channel flow, the
Cebeci-Smith velocity shows greater differences (8%) from the data, while the
Reynolds shear stress values are very close to those predicted by the Baldwin-
Lomax model.
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Figure 3.14: Comparison of computed and measured pipe-flow properties,
Re, = 40000. —— Baldwin-Lomax model; - - - Cebeci-Smith model; o Laufer,
o Prandtl correlation.
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Computed skin friction is within 8% and 1% for the Cebeci-Smith and
Baldwin-Lomax models, respectively, of Prandtl’s universal law of friction for
smooth pipes [see Schlichting-Gersten (1999)] given by

1
?/C_? = 4logyy (2Rep/C5) — 1.6 (3.140)
where ¢y and Re,, are based on average velocity across the pipe and pipe diam-
eter, D.

These computations illustrate that subtle differences in the Reynolds shear
stress can lead to much larger differences in velocity for pipe and channel flow.
This means we must determine the Reynolds shear stress very accurately in order
to obtain accurate velocity profiles. To some extent this seems odd. The Reynolds
stress is a higher-order correlation while velocity is a simple time average. Our
natural expectation is for the mean velocity to be determined with great precision
while higher-order quantities such as Reynolds stress are determined with a bit
less precision. The dilemma appears to stem from the fact that we need the same
precision in 7, as in OU/Jy. As we advance to more complicated turbulence
models, we will see this accuracy dilemma repeated, although generally with less
severity. As applications go, channel and pipe flow are not very forgiving.

Interestingly, Figure 3.14 shows that for the higher Reynolds number pipe
flow, higher velocity is predicted with the Cebeci-Smith model than with the
Baldwin-Lomax model. The opposite is true for the lower Reynolds number
channel-flow case. Cebeci and Smith (1974) have devised low-Reynolds-number
corrections for their model which, presumably, would reduce the differences from
the DNS channel-flow results.

3.5.2 Boundary Layers

In general, for a typical boundary layer, we must account for pressure gradient.
Ignoring effects of normal Reynolds stresses and introducing the eddy viscos-
ity to determine the Reynolds shear stress, the two-dimensional (5 = 0) and
axisymmetric (j = 1) boundary-layer equations are as follows.

ou 18,
ot By (YV)=0 (3.141)
oU oU  1dP 1 0 ; U
U_8T£+V3—y__{) dx +y3' Oy [y (v + vr) 39} (3.142)

The appropriate boundary conditions follow from the no-slip condition at the
surface and from insisting that U — U, as we approach the boundary-layer edge.
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Figure 3.15: Comparison of computed and correlated shape factor and skin
friction for flat-plate boundary layer flow; o Coles; —— Cebeci-Smith model.
[From Kline et al. (1969) — Used with permission.]

Consequently, we must solve Equations (3.141) and (3.142) subject to

U(z,0) = 0
Viz,0) = 0 (3.143)
U(z,y) — Ulx) as y—dx)

where d(z) is the boundary-layer thickness.

The Cebeci-Smith model has been applied to a wide range of boundary-
layer flows and has enjoyed a great deal of success. Figure 3.15, for example,
compares computed skin friction, ¢y, and shape factor, H, for a constant-pressure
(flat-plate) boundary layer with Coles’ [Coles and Hirst (1969)] correlation of
experimental data. Results are expressed as functions of Reynolds number based
on momentum thickness, Rea. As shown, model predictions virtually duplicate
correlated values.

The model remains reasonably accurate for favorable pressure gradient and
for mild adverse pressure gradient. Because the model has been fine tuned
for boundary-layer flows, differences between computed and measured velocity
profiles generally are small. Typically, integral parameters such as momentum
thickness and shape factor show less than 10% differences from measured values.
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Figure 3.16 compares computed and measured boundary-layer properties for
two of the flows considered in the 1968 AFOSR-IFP-Stanford Conference on the
Computation of Turbulent Boundary Layers (this conference is often referred to
colloquially as Stanford Olympics I). For both cases, computed and measured
velocity profiles are nearly identical. Flow 3100 is two dimensional with a mild
favorable pressure gradient. Despite the close agreement in velocity profiles
overall, differences in shape factor are between 8% and 10%. Flow 3600 is
axisymmetric with an adverse pressure gradient. For this flow, shape factors
differ by less than 5%. The Baldwin-Lomax model also closely reproduces
measured flow properties for these types of boundary layers.
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Figure 3.16: Comparison of computed and measured boundary layer velocity
profiles and shape factor for flows with nonzero pressure gradient; Cebeci-Smith
model. [From Kline et al. (1969) — Used with permission.]

Figure 3.17 compares computed and measured skin friction for sixteen in-
compressible boundary layers subjected to favorable, zero and adverse pressure
gradients. For both models, computed and measured ¢ s generally differ by less
than 10%. Fifteen of the sixteen cases considered are from Stanford Olympics 1.
The lone exception is Flow 0141, which corresponds to a boundary layer in an
increasingly adverse pressure gradient. This flow has been studied experimen-
tally by Samuel and Joubert [see Kline et al. (1981)]. It was a key boundary-layer
case included in the 1980-81 AFOSR-HTTM-Stanford Conference on Complex
Turbulent Flows (known colloquially as Stanford Olympics II). Measurements
for all cases satisfy the momentum-integral equation, thus assuring their two-
dimensionality and accuracy of the experiments.
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Figure 3.17: Computed and measured skin friction for boundary layers subjected
to a pressure gradient. Top row - favorable Vp; next o top row - mild adverse
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Table 3.1 summarizes the difference between computed and measured c; at
the final station for the various pressure gradients. This is a sensible measure of
the overall accuracy as all transients have settled out, and, with the exception of
Flow 2400, the pressure gradient is strongest at the end of the computation. The
overall average difference for the 16 cases is 9% for the Baldwin-Lomax model
and 11% for the Cebeci-Smith model.

Table 3.1: Differences Between Computed and Measured Skin Friction.

{_Pressure Gradient | Flows | Baldwin-Lomax | Cebeci-Smith |
Favorable 1400, 1300, 2700, 6300 T% 5%
Mild Adverse 1100, 2100, 2500, 4800 6% 7%
Moderate Adverse 2400, 2600, 3300, 4500 10% 15%
Strong Adverse 0141, 1200, 4400, 5300 14% 16%
All — 9% 11%

One noteworthy case is Flow 3300 of the 1968 AFOSR-IFP-Stanford Confer-
ence on the Computation of Turbulent Boundary Layers. This flow, also known
as Bradshaw Flow C, has a strongly adverse pressure gradient that is gradually
relaxed and corresponds to an experiment performed by Bradshaw (1969). It was
generally regarded as one of the most difficult to predict of all flows considered
in the Conference. As shown, both models predict skin friction very close to the
measured value. The Cebeci-Smith value for cf at the final station (z = 7 ft.)
is 6% lower than the measured value. The Baldwin-Lomax value exceeds the
measured value at z = 7 ft. by 3%.

A second case worthy of mention is Flow 0141 of the 1980-81 AFOSR-
HTTM-Stanford Conference on Complex Turbulent Flows. The close agreement
between theory and experiment for this flow is remarkabie. The Cebeci-Smith
and Baldwin-Lomax values for ¢y at z ~ 3 m. are within 14% and 2% of the
measured value, respectively. This boundary layer was presumed to be a “simple”
flow for Conference participants. However, as we will discuss further in Chapter
4, it proved to be the Achilles heel of the best turbulence models of the day.

The only case the models fail to predict accurately is Flow 5300, which is
known as the Stratford (1959) “incipient-separation™ flow. The boundary layer
experiences an adverse pressure gradient that is of sufficient strength to drive it
to the brink of separation. The Cebeci-Smith model’s skin friction at the final
station (z = 4.1 ft.) is 58% higher than measured. The Baldwin-Lomax model
predicts boundary-layer separation at x =~ 3 ft.

As a final comment, all sixteen computations have been done using Program
EDDYBL, a boundary-layer program suitable for two-dimensional and axisym-
metric flows. The companion CD provided with this book includes the program
and detailed user’s information (see Appendix C).
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3.6 Separated Flows

All of the applications in the preceding section are for attached boundary layers.
We turn now to flows having an adverse pressure gradient of sufficient strength
to cause the boundary layer to separate. Separation occurs in many practical
applications including stalled airfoils, flow near the stern of a ship, flow through
a diffuser, etc. Engineering design would be greatly enhanced if our turbulence
model were a reliable analytical tool for predicting separation and its effect on
surface pressure, skin friction and heat transfer. Unfortunately, algebraic models
are quite unreliable for separated flows.

When a boundary layer separates, the streamlines are no longer nearly parallel
to the surface as they are for attached boundary layers. We must solve the full
Reynolds-averaged Navier-Stokes equation [Equation (2.24)], which includes all
components of the Reynolds-stress tensor. In analogy to Stokes hypothesis for
laminar flow, we set

Tij = 2vrpS;; (3.144)
where .5;; is the mean strain-rate tensor defined by
1
Sz" == §[Uf,j -+ Uf,i] (3145)

Figure 3 18 is typical of separated-flow results for an algebraic model. The
flow 1s axisymmetric and has a strong adverse pressure gradient. The experiment
was conducted by Driver (1991). The computation was done with Program
EDDY2C (see Appendix C). Inspection of the skin friction shows that the
Baldwin-Lomax model yields a separation bubble nearly twice as long as the
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Figure 3.18: Computed and measured flow properties for Driver’s separated
flow;, —— Baldwin-Lomax model; o Driver.
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experimentally observed bubble. The corresponding rise in pressure over the
separation region is 15% to 20% higher than measured. As noted by Menter
(1992b), the Cebeci-Smith model yields similar results.

It is not surprising that a turbulence model devoid of any information about
flow history will perform poorly for separated flows. On the one hand, the
mean strain-rate tensor undergoes rapid changes in a separated flow associated
with the curved streamlines over and within the separation bubble. On the other
hand, the turbulence adjusts to changes in the flow on a time scale unrelated
to the mean rate of strain. Rotta (1962), for example, concludes from analysis
of experimental data that when a turbulent boundary layer is perturbed from its
equilibrium state, a new equilibrium state is not attained for at least 10 boundary-
layer thicknesses downstream of the perturbation. In other words, separated flows
are very much out of “equilibrium.” The Boussinesq approximation, along with
all the “equilibrium” approximations implicit in an algebraic model, can hardly
be expected to provide an accurate description for separated flows.

Attempts have been made to remedy the problem of poor separated-flow
predictions with the Cebeci-Smith model. Shang and Hankey (1975) introduced
the notion of a relaxation length, L, to account for upstream turbulence history
effects. They introduced what they called a relaxation eddy viscosity model
and determined the eddy viscosity as follows.

pr = fir,, — (e, — o, Yo~ F21)/L (3.146)

The quantity p.,, = pvr,, denotes the equilibrium eddy viscosity correspond-
ing to the value given by Equations (3.110) through (3.113), while M7, is the
value of the eddy viscosity at a reference point, z = z,, upstream cf the sep-
aration region. Typically, the relaxation length is about 56;, where d; is the
boundary-layer thickness at £ = x;. The principal effect of Equation (3.146)
is to reduce the Reynolds stress from the “equilibrium” value predicted by the
Cebeci-Smith model. This mimics the experimental observation that the Reynolds
stress remains nearly frozen at its initial value while it is being convected along
streamlines in the separation region, and approaches a new equilibrium state
exponentially.

In a similar vein, Hung (1976) proposed a differential form of Shang and
Hankey’s Equation (3.146), viz.,

dpg Hreg — M1
= .147
dx L (3.147)

This equation is very similar to the earlier proposal of Reyhner [Kline et al.
(1969)]. Hung (1976) exercised these relaxation models in several supersonic
shock-separated flows. He was able to force close agreement between com-
puted and measured locations of the separation point and the surface-pressure
distribution. However, he found that these improvements come at the expense
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of increased discrepancies between computed and measured skin friction, heat
transfer and reattachment-point location.

3.7 The 1/2-Equation Model

Johnson and King (1985) [see also Johnson (1987) and Johnson and Coakley
(1990)] have devised a “non-equilibrium” version of the algebraic model. Their
starting point is a so-called “equilibrium” algebraic model in which the eddy
viscosity is

fir = pr, tanh(pr, /pr,) (3.148)
where pty, and pr, represent inner-layer and outer-layer eddy viscosity, respec-
tively. The hyperbolic tangent is used to eliminate the discontinuity in Our /0y
attending the use of Equation (3.110).

Inner Layer:

The inner-layer viscosity, pr, , is similar to the form used in the Cebeci-Smith
and Baldwin-Lomax models. However, the dependence on velocity gradient has
been replaced by explicit dependence on distance from the surface, y, and two
primary velocity scales, u, and um, as follows:

2
UpY/V

fr, = P [1 — exp (—-ITE’;/—)} KUsY (3.149)
VPts = (1 = 12)y/Tw + Y23/ (3.150)
v2 = tanh(y/L.) (3.151)
Le= —————=1Im 3.152
’ Tw -+ v/ Tm ( )

_ KYm, ?j‘m/a < (Yl/-‘“u
Kam = { Ch8, ym/d > Ci/k (2:1.28)

U = Tm/pm (3154)

Up = MaX|Up, Ur] (3.155)

where subscript m denotes the value at the point, ¥ = ¥m, at which the Reynolds
shear stress, p7,y, assumes its maximum value denoted by 7, = (D P
Additionally . is the conventional friction velocity and p,, is the density at the
surface, y = 0. In its original form, this model used only the velocity scale un,
in Equation (3.149). This scale proved to provide better predictions of velocity
profile shape for separated flows than the velocity-gradient prescription of Prandtl
[Equation (3.15)]. Later, the secondary velocity scales u, and u,, were added to
improve predictions for reattaching flows and for flows with nontrivial effects
of compressibility.
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Quter Layer:
The “non-equilibrium” feature of the model comes in through the appearance
of a “nonequilibrium parameter,” o(z), so that:

pr, = apUely Freroo(y; 8)o () (3.156)

Comparison of this equation with Equation (3.113) shows that the outer-layer vis-
cosity, fir, = pvr,, 1s equal to that used in the Cebeci-Smith model multiplied by
o(z). The Johnson-King model solves the following ordinary differential equa-
tion for the maximum Reynolds shear stress, 7,,, in terms of w,, = /77, /pm.

d (U )eq — Um ud,
mg; (ufn) = [_”—)Ifrn—“—] ufn = Od,‘f [m} ,]. = 0*1/2(2',‘)|

(3.157)
where Up, is mean velocity and (uy, )4 is the value of u,, according to the “equi-
librium” algebraic model [o(z) = 1]. The first term on the right-hand side of
Equation (3.157) is reminiscent of Hung’s relaxation model [Equation (3.147)].
The second term is an estimate of the effect of turbulent diffusion on the Reynolds
shear stress. Equation (3.157) is solved along with the Reynolds-averaged equa-
tions to determine 7,,. As the solution proceeds, the coefficient o(x) is deter-
mined so that the maximum Reynolds shear stress is given by

ou 8V
T = (P:'r)m -35 i oz

That is, the ;- distribution is adjusted to agree with 7,,,. In using this model,
computations must be done iteratively since o(z) is unknown a priori, wherefore
the value from a previous iteration or an extrapolated value must be used in
solving Equation (3.157) for 7,,.

(3.158)

Closure Coefficients:

x = 0.40, a = 0.0168, AY =17
a; =0.25, Cj =0.09, Cy = 0.70 (3.159)
Cai =050 for o(z)>1; 0 otherwise

The general idea of this model is that the Reynolds shear stress adjusts
to departures from “equilibrium” at a rate different from that predicted by the
algebraic model. The ordinary differential equation for u., is used to account
for the difference in rates. Because this equation is an ordinary, as opposed to a
partial, differential equation, the turbulence community has chosen the curious
terminology 1/2-Equation Medel to describe this model. It is unclear whether
this means it has half the number of dimensions (but then, it would have to be a
1/3-Equation Model for three-dimensional applications) or if partial differential
equations are twice as hard to solve as ordinary differential equations.
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Figure 3.19 compares computed and measured skin friction for the sixteen
boundary-layer flows of Stanford Olympics I and II discussed earlier. As with
the algebraic models, the computations have been done using Program EDDYBL
(see Appendix C). Note that predicted ¢y for the constant-pressure case (Flow
1400) is 5% less than measured values. This is a direct consequence of using
Equation (3.148). As can be readily verified, using Equation (3.110), computed
skin friction matches measured values almost exactly.

As summarized in Table 3.2, overall differences between computed and mea-
sured cs are somewhat larger than corresponding differences for the Baldwin-
Lomax model. The overall average difference at the final station for the flows
is 20% as compared to 9% for the Baldwin-Lomax model (and 11% for the
Cebeci-Smith model).

Table 3.2: Differences Between Computed and Measured Skin Friction.

[ Pressure Gradient | Flows | Johnson-King | Baldwin-Lomax |
Favorabie 1400, 1300, 2700, 6300 7% 7%
Mild Adverse 1100, 2100, 2500, 4800 11% 6%
Moderate Adverse | 2400, 2600, 3300, 4500 13% 10%
Strong Adverse 0141, 1200, 4400, 5300 50% 1495
All - 20% 9%

As noted earlier, Bradshaw Flow C (Flow 3300) was one of the most diffi-
cult cases in the 1968 AFOSR-IFP-Stanford Conference on the Computation of
Turbulent Boundary Layers. The Johnson-King model fares rather poorly on this
case with computed skin friction 19% higher than the measured value at the fi-
nal station. Recali that the Cebeci-Smith and Baldwin-Lomax model predictions
were within 6% and 3% of the measured value, respectively.

Also, for the Samuel-Joubert increasingly adverse pressure gradient case
(Flow 0141), the computed skin friction is 13% higher than the measured value.
By contrast, the Cebeci-Smith and Baldwin-Lomax models predict ¢y 14% and
2% lower, respectively.

As a bit of a surprise, while the predicted boundary layer remains attached for
the Stratford incipient-separation case (Flow 5300), the computed skin friction is
more than four times the measured value. Results obtained with the Cebeci-Smith
model (see Figure 3.17) are quite a bit closer to measurements.

Although the differences are somewhat larger than those of the algebraic mod-
els, inspection of Figure 3.19 shows that, with the exception of Flow 5300, the
accuracy is satisfactory for most engineering applications. The differences can
probably be reduced to the same levels as for the Baldwin-Lomax and Cebeci-
Smith models by either recalibrating the closure coefticients or by using Equa-
tion (3.110) instead of Equation (3.148).
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Figure 3.19: Computed and measured skin friction for boundary layers subjected
to a pressure gradient. Top row - favorable \p; next to top row - mild adverse
Vp, next to bottom row - moderate adverse Vp, bottom row - strong adverse
Vp. — Johnson-King model; o measured.
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Menter (1992b) has applied the Johnson-King model to Driver’s (1991) sepa-
rated flow. Figure 3.20 compares computed and measured values; results for the
Baldwin-Lomax model are also included. As shown, the Johnson-King model
predictions are much closer to measurements, most notably in the size of the
separation region.

103ch”D Cp
2 .8 T T T
1§ = 4
0 0
-1 1 L -4 ! 1 L
—2 0 2 4 —4 b -2 0 2 4
z/D /D

Figure 3.20: Computed and measured flow properties for Driver’s separated
Slow, Johnson-King model; - - - Baldwin-Lomax,; o Driver.

3.8 Range of Applicability

Algebraic models are the simplest and easiest to implement of all turbulence
models. They are conceptually very simple and rarely cause unexpected numer-
ical difficulties. Because algebraic models are so easy to use, they should be
replaced only where demonstrably superior alternatives are available.

The user must always be aware of the issue of incompleteness. These models
will work well only for the flows for which they have been fine tuned. There is
very little hope of extrapolating beyond the established data base for which an
algebraic model is calibrated. We need only recall that for the five free shear
flows considered in Section 3.3, five different values for the mixing length are
needed—and none of these lengths 1s appropriate for wall-bounded flows!

On balance, both the Cebeci-Smith and Baldwin-Lomax models faithfully re-
produce skin friction and velocity profiles for incompressible turbulent boundary
layers provided the pressure gradient is not too strong. Neither model is clearly
superior to the other: the accuracy level is about the same for both. The chief
virtue of the Baldwin-Lomax model over the Cebeci-Smith model is its indepen-
dence of properties such as 4 that can often be difficult to define accurately in
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complex flows. Its other differences from the Cebeci-Smith model are probably
accidental. However, neither model is reliable for separated flows. Despite this
well-known limitation, many incautious researchers have applied the Baldwin-
Lomax model to extraordinarily complex flows where its only virtue is that it
doesn’t cause the computation to blow up.

The Johnson-King model offers a helpful modification that removes much of
the inadequacy of algebraic models for separated flows. However, like algebraic
models, the Johnson-King model provides no information about the turbulence
length scale and is thus incomplete. Consequently, it shares many of the short-
comings of the underlying algebraic model. On the negative side, the improved
agreement between theory and experiment for separated flows has been gained
with a loss of the elegance and simplicity of the Cebeci-Smith model. The num-
ber of ad hoc closure coefficients has increased from three to seven, and the
model inherently requires an iterative solution procedure. The model is also for-
mulated specifically for wall-bounded flows and is thus restricted to such flows,
i.e., the model is highly geometry dependent. On the positive side, the Johnson-
King model has been applied to many transonic flows that tend to be particularly
difficult to predict with modern turbulence models. The model’s track record has
been quite good with such flows. Its predictions for attached boundary layers
could be made even closer to measurements by either using Equation (3.110)
instead of Equation (3.148) or simply recalibrating the model’s closure coeffi-
cients. On balance, this model appears to be a useful engineering design tool,
within its verified range of applicability.
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Problems

3.1 With the eddy viscosity given by Equation (3.25), generate a similarity solution for
the far wake. Obtain the exact closed-form solution, and determine the value of x by
forcing agreement with the corresponding u.(z) and &{z) derived in this chapter. The
following integral will be useful when you apply the integral constraint.

oo e ___‘\/7_1'
\/E: [ dE—T

3.2 With the eddy viscosity given by Equation (3.25), generate a similarity soiution for
the plane jet. Obtain the exact closed-form solution, and determine the value of x by
forcing agreement with the corresponding u.(z) and 8(x) derived in this chapter. The
following integrals will be useful in deniving the solution.

dx 1 s
= =i tanh "t (-33) <+ constant
2 —x c c

e 2

1 - tanh®¢£}°de = =

[} [ anh 5] dé 3

3.3 Beginning with the integral constraint in Equation (3.81) and assuming the streamwise

velocity is U(z,y) = uo.(z)U(n) where n = y/(Ax), determine the function uo(x).
Arrange your result so that

/ U(m)n’dn = 1
0
and verify that your solution is consistent with Equation (3.84).

3.4 Verify that the solution to Equations (3.45) is given by Equations (3.46) — (3.48) for
the far wake.

3.5 Beginning with Equation (3.65), introduce Equations (3.68) through (3.71) and derive
Equation (3.73) for the mixing layer.

3.6 Beginning with Equation (3.83), derive Equation (3.86) for plane and round jets.
3.7 Beginning with Equation (3.83), derive Equation (3.86) for the radial jet.

3.8 The skin friction and displacement thickness for a constant-pressure turbulent boundary
layer are approximately ¢y == 0.045Re;1/4 and §* == %5, where Res = U.d/v is
Reynolds number based on 8. Note also that, by definition, ¢y = 2u? v UZ2. Assuming the
matching point always occurs in the log layer so that 83U /0y = u. /(ky), make a graph
of ym /6 and y,}, versus Res for the Cebeci-Smith model. Let Re; vary between 10* and
10°. You should first rewrite the equations for v, and vy, in terms of y/6 and Res.
Then, solve the resulting equation for y,,, /& with an iterative procedure such as Newton’s
method. Compare your numerical results with Equation (3.118).
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3.9 Show that using Equation (3.99) for the mixing length in the viscous sublayer yields
a velocity that behaves according to:

2
U+%y+—%(y+)3+'-- as gyt —0
3.10 Assume the velocity in a boundary layer for y* > 1 is given by
1 1 . Y
o~ Lo 0 L ()
K’t’ny +50+&sm o5

Also, assume that yma. >> 26v/u, for the Baldwin-Lomax model. Compute the quan-
tities Ymaw Frnaz and CukYmax U3 / Finaz for this boundary layer. Then, noting that
skin friction is given by ¢y = 2uZ /U2, determine the largest value of c; for which
Fyake = YmaxFmax. HINT: The solution to the transcendental equation £ + tanf = 0

is £ ~ 2.03.

3.11 The momentum equation in the sublayer and log layer for a turbulent boundary layer
with surface mass transfer simplifies to:

dU _ d dU’
Y T dy [("+”T)"&EJ
where v, is the (constant) vertical velocity at the surface.

(a) Integrate once using the appropriate surface boundary conditions. Introduce the
friction velocity, u-, in stating your integrated equation.

(b) Focusing now upon the log layer where vp > v, what is the approximate form of
the equation derived in Part (a) if we use the Cebeci-Smith model?

(c) Verify that the solution to the simplified equation of Part (b) is
U 5 1
2v_ VI1+v,U/u2 = Efny + constant

3.12 Determine the constant C in the law of the wall implied by the mixing-length model
using a standard numerical integration scheme such as the Runge-Kutta method. That is,
solve the following equation for U+,
aut
+ —
(1+ ”T)dy_+ =1

Integrate from y* = 0 to y* = 500 and calculate the limiting value of C as y* — oo
from examination of

(2SS 1£ny+ at  y* = 250,300, 350, 400, 450 and 500
s

Do the computation with the mixing length given by (i) Equation (3.99) and (ii) Equa-
tion (3.105). NOTE: To avoid truncation error, verify the following limiting form of the
equation for dUT /dy™ .
dU*
dy+t

Use this asymptotic form very close to y+ = 0.

TS (A [ R N

mix

mixr

xl—(f"'
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3.13 Generate a solution for channel and pipe flow using a mixing-length model with the
mixing length in the inner and outer layers given by

o =) HY {1 — e_y+/26] , Inner Layer
~TRLE
.09R , Outer Layer

where R is channel half-height or pipe radius. Use a numerical integration scheme such as
the Runge-Kutta method, or modify Program PIPE (see Appendix C). Compare computed
skin friction with Equations (3.139) and (3.140). See NOTE below.

NOTE for 3.13 and 3.14: To assist in presenting your results, verify that skin
friction and Reynolds number are given by c; = 2/(U},,)? and Rep = 2U},,R*
where Rt = u,R/v and U,.q is the average velocity across the channel/pipe.
Also, to avoid truncation error, verify the following limiting form of the equation for
dUY Jdy™ in the limit £

mix
7+ +
dl m gl Yy
dyt R+

7 goe w2 y" 2-+ 4
1_(1_}'2:) {\fm.r':x:) +2(1—¥) (Em,v;:z:

Use this asymptotic form very close to y* = 0.

— 0.

3.14 Generate a solution for pipe flow using a mixing-length model with the mixing length
given by Nikuradse’s formula, i.c.,

Cmiz/R = 0.14 — 0.08(1 — y/R)? — 0.06(1 — y/R)*

where R is pipe radius. Use a numerical integration scheme such as the Runge-Kutta
method, or modify Program PIPE (see Appendix C). Compare computed skin friction
with Equation (3.140). See NOTE above.

3.15 Using a standard numerical integration scheme such as the Runge-Kutta method,
determine the constant C in the law of the wall implied by the Johnson-King model. That
is, solve the following equation for U™.

au
+
(1 +HT)dy—+

Integrate from yt = 0 to y* = 500 and calculate the limiting value of C as y* — oo
from examination of

G = %fny* at  y* = 250,300, 350, 400, 450 and 500

NOTE:: To avoid truncation error, verify the following limiting form for dU* /dy™.

dut

o~ 1= () +2 () e G o0

Use this asymptotic form very close to y* = 0.
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3.16 Using Program PIPE and its menu-driven setup utility, Program PIPE_DATA (see
Appendix C), compute the skin friction for channel flow according to the Johnson-King
model. Compare your results with the Halleen-Johnston correlation [Equation (3.139] for
10? < Rex < 10°. Also, compare the computed velocity profile for Rey = 13750 with
the Mansour et al. DNS data, which are as follows.

Ly/(H/2) | U/Um ]| y/(H/2) T U/Um || 4/(H/2) | U/Um |

0.000 0.000 0.404 0.887 0.805 0.984
0.103 0.717 0.500 0.917 0.902 0.995
0.207 0.800 0.602 0.945 1.000 1.000
0.305 0.849 0.710 0.968

3.17 Using Program PIPE and its menu-driven setup utility, Program PIPE_DATA (see
Appendix C), compute the skin friction for pipe flow according to the Johnson-King
model. Compare your numerical resuits with the Prandt] correlation [Equation (3.140] for
10° < Rep < 10°. Also, compare the computed velocity profile for Rep = 40000 with
Laufer’s data, which are as follows.

| ¥/(D/2) | U/Un [[ y/(D/2) | U/Um || y/(D/2) | U/Us, |

0.010 0.333 0.390 0.868 0.800 0.975
0.095 0.696 0.490 0.902 0.900 0.990
0.210 0.789 0.590 0.931 1.000 1.000
0.280 0.833 0.690 0.961

3.18 The object of this problem is to compare predictions of algebraic models with mea-
sured properties of a turbulent boundary layer with adverse Vp. The experiment to be
simulated was conducted by Ludwieg and Tillman [see Coles and Hirst (1969) — Flow
1200]. Use Program EDDYBL, its menu-driven setup utility, Program EDDYBL_DATA,
and the input data provided on the companion CD (see Appendix C). Do 3 computa-
tions using the Cebeci-Smith, Baldwin-Lomax and Johnson-King models and compare
computed skin friction with the following measured values.

Lsm ] o fsm[ ¢ |

0.782 [ 292.10=° [] 2282 [ 1.94.10—
1.282 | 2.49.10~3 )| 2.782 | 1.55-10-3

1.782 | 2.05-1073

3.19 The object of this problem is to compare predictions of algebraic models with mea-
sured properties of a turbulent boundary layer with adverse Vp. The experiment to be
simulated was conducted by Bradshaw [see Coles and Hirst (1969) — Flow 3300]. Use
Program EDDYBL, its menu-driven setup utility, Program EDDYBL_DATA, and the
input data provided on the companion CD (see Appendix C). Do 3 computations using
the Cebeci-Smith, Baldwin-L.omax and Johnson-King models and cormpare computed skin
friction with the following measured values.

Ls® [ o [s®[ o [Ts®] ¢ ]
25 [ 245107 400 | 1911073 ] 7.00 | 1.56-10~3

3.0 2.17-10°3 500 | 1.74-103
3.5 2.00-10—% 6.00 | 1.61-10°3
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3.20 The object of this problem is to predict the separation point for flow past a circular
cylinder with the boundary-layer equations, using the measured pressure distribution. The
experiment to be simulated was conducted by Patel (1968). Use Program EDDYBL
and its menu-driven setup utility, Program EDDYBL _DATA, to do the computations (see

Appendix C).

Problem 3.20

(2) Set freestream conditions to p:., = 2147.7 Ib/ft*, Ty = 529.6°R, Mo, = 0.144
(PT1, TT1, XMA); use an initial stepsize, initial arclength and final arclength
given by As = 0.001 ft, s; = 0.262 ft and s; = 0.785 ft (DS, SI, SSTOP); set the
initial boundary-layer properties so that ¢y = 0.00600, § = 0.006 ft, H = 1.40,
Reg =929, (CF, DELTA, H, RETHET); set the maximum number of steps to 500
(IEND1); and set up for N = 47 points to define the pressure (NUMBER). Use
the following data to define the pressure distribution. The initial and final pressure
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gradients are zero. Finally, use zero heat flux at the cylinder surface.

[[(s@ 1 p. (/&%) s(®) | pe(/A%) [ sty | pe (/)
0.0000 | 2.147540-10° || 0.1500 | 2.11619%.10° [} 0.3500 | 2.055516.i0°
0.0025 | 2.147528-10% || 0.1625 | 2.112205-10° 0.3625 | 2.056591-10°
0.0050 | 2.147491-103 || 0.1750 | 2.107903.10° 0.3750 | 2.058435.10°
0.0075 | 2.147429-10% || 0.1875 | 2.103448-10% |{ 03875 | 2.061661.10°
0.0100 | 2.147343-10° 02000 | 2.098378.103 0.4000 | 2.066423.10°
0.0125 | 2.147233.10% || 0.2125 | 2.093155-10% || 04125 | 2.071954.103
0.0250 | 2.146314-10% {| 0.2250 | 2.087317.103 0.4250 | 2.079021.10%
0.0375 | 2.144796-10% || 0.2375 | 2.081325-10% || 04375 | 2.085473.10°
0.0500 | 2.142688.10% || 0.2500 | 2.075334.103 || 0.4500 | 2.089161-10°
0.0625 | 2.140018-10% || 0.2625 | 2.069189.10° || 0.4625 | 2.091004-10°
0.0750 | 2.136807-10* [} 0.2750 | 2.064580-10% || 04750 | 2.092080-10°
0.0875 | 2.134021-10% || 02875 | 2.060893.10% || 0.4875 | 2.092230.10°
0.1000 | 2.130641-10% || 0.3000 | 2.05858%8.-10° || 0.5000 | 2.092230-107
0.1125 | 2.127261-10% || 0.3125 | 2.056898.10% || 0.6500 | 2.092230-10°
0.1250 | 2.123881-10% || 0.3250 | 2.055823-10° || 0.7850 | 2.092230-10°
0.1375 | 2.120194-10% || 0.3375 | 2.055362-10°

(b) Do three computations using the Cebeci-Smith, Baldwin-Lomax and Johnson-King
models. Compare computed separation angle measured from the downstream sym-
metry axis with the measured value of 0., = 70°. The radius of the cylin-
deris R = 0.25 fi, so that separation arclength, s..p, is related to this angle by

Boayy =T = Fauy/ R




Chapter 4

One-Equation and
Two-Equation Models

As computers have increased in power since the 1960°s, turbulence models based
upon the equation for the turbulence kinetic energy have become the cornerstone
of modern turbulence-modeling research. This chapter discusses two types of
eddy-viscosity models, viz., One-Equation Models and Two-Equation Models,
with most of the emphasis on the latter. These models both retain the Boussinesq
eddy-viscosity approximation, but differ in one important respect. One-equation
models based on the turbulence kinetic energy equation are incomplete as they
relate the turbulence length scale to some typical flow dimension. These models
are rarely used. By contrast, two-equation models and one-equation models based
on an equation for the eddy viscosity automatically provide the turbulence length
scale or its equivalent and are thus complete.

The chapter focuses strictly on incompressible flow and begins with a deriva-
tion and discussion of the turbulence kinetic energy equation. We then introduce
one-equation models based on this equation and upon a postulated equation for
the eddy viscosity. The discussion includes examples of how such models fare
for several flows. Next, we introduce two-equation models with specific details
of the two most commonly used models. Our first two-equation model applica-
tions are to the same free shear flows considered in Chapter 3. Then, we use a
powerful tool, singular-perturbation theory, to analyze model-predicted features
of the turbulent boundary layer. We apply two-equation models to attached wall-
bounded flows and compare to corresponding algebraic-model predictions. We
discuss the issue of asymptotic consistency approaching a solid boundary, and
the ability of two-equation models to predict transition from laminar to turbu-
lent flow. Our final applications are to separated flows. The concluding section
discusses the range of applicability of one- and two-equation models,

107
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4.1 The Turbulence Energy Equation

Turbulence energy equation models have been developed to incorporate nonlocal
and flow history effects in the eddy viscosity. Prandtl (1945) postulated com-
puting a characteristic velocity scale for the turbulence, v,,:, thus obviating the
need for assuming that vy, ~ € |0OU/3y| [c.f. Equation (3.15)]. He chose
the kinetic energy (per unit mass) of the turbulent fluctuations, %, as the basis of
his velocity scale, i.e.,

i e wm  sesms
=5 (u"z 4 v'2 +w’2) 4.1)

Thus, in terms of & and a turbulence length scale, ¢, dimensional arguments
dictate that the kinematic eddy viscosity is given by

vy = constant - k'/2¢ (4.2)

Note that we drop subscript “mix” in this chapter for convenience, and to avoid
confusion with the mixing length used in algebraic models.

The question now arises as to how we determine k£. The answer is provided
by taking the trace of the Reynolds-stress tensor, which yields the following.

T = —uju, = —2k (4.3)

Thus, the trace of the Reynolds-stress tensor is proportional to the kinetic energy
of the turbulent fluctuations per unit volume. The quantity & should strictly be
referred to as specific turbulence Kinetic energy (“specific” meaning “per unit
mass’’), but is often just called turbulence kinetic energy.

In Chapter 2 we derived a differential equation describing the behavior of the
Reynolds-stress tensor, 75, i.¢., Equation (2.34). We can derive a corresponding
equation for k by taking the trace of the Reynolds-stress equation. Noting that
the trace of the tensor IT;; vanishes for incompressible flow, contracting Equa-
tion (2.34) leads to the following transport equation for the turbulence kinetic
energy.

ok Ok oU; o Ok 1 ~ 1
5 +U; 5z, = Tij 9z, — €+ _d?j, [va% — Euiu;’;uj - Bp’uj} (4.4)

The quantity ¢ is the dissipation per unit mass and is defined by the following

correlation. _
8u ou;,
€= S:Lk Oz “.5)

The various terms appearing in Equation (4.4) represent physical processes
occurring as the turbulence moves about in a given flow. The sum of the two
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terms on the left-hand side, i.c., the unsteady term and the convection, is the
familiar substantial derivative of k that gives the rate of change of k following a
fluid particle. The first term on the right-hand side is known as Production, and
represents the rate at which kinetic energy is transferred from the mean flow to
the turbulence. Rewritten as 7;;.5;; (because 7;; is symmetric), this term is seen
to be the rate at which work is done by the mean strain rate against the turbulent
stresses. Dissipation is the rate at which turbulence kinetic energy is converted
into thermal internal energy, equal to the mean rate at which work is done by the
fluctuating part of the strain rate against the fluctuating viscous stresses. The term
involving v0k/0x; is called Molecular Diffusion, and represents the diffusion
of turbulence energy caused by the fluid’s natural molecular transport process.
We refer to the triple velocity correlation term as Turbulent Transport, and
regard it as the rate at which turbulence energy is transported through the fluid
by turbulent fluctuations. The last term on the right-hand side of the equation
is called Pressure Diffusion, another form of turbulent transport resulting from
correlation of pressure and velocity fluctuations.

The quantity € as defined in Equation (4.5) differs from the classical definition
of dissipation given in the preceding paragraph. From the latter, it follows that
[cf. Townsend (1976) or Hinze (1975)] the true dissipation, €;;e, is proportional
to the square of the fluctuating strain-rate tensor, s}, , viz.,

—F 1 [ ou, Oup
€true = 2!"3;;‘;5;&; Sgk = ‘2‘ (83‘& -+ 35[3%' ) (46}
Hence, the quantity € is given by (for incompressible flow):
a o
€= €true — B_mc (l/u; 3Tf) (47)

In practice, the difference between € and €4, is small and should be expected
to be significant only in regions of strong gradients, e.g., shock waves or the
viscous wall region. In the latter case, Bradshaw and Perot (1993) have shown
that the maximum difference is just 2%, and can thus be ignored.

The unsteady term, convection and molecular diffusion are exact while pro-
duction, dissipation, turbulent transport and pressure diffusion involve unknown
correlations. To close this equation, we must specify 7,;, dissipation, turbulent
transport and pressure diffusion.

The conventional approach to closure of the k£ equation was initiated by
Prandt] (1945) who established arguments for each term in the equation. This
term-by-term modeling approach amounts to performing drastic surgery on the
exact equation, replacing unknown correlations with closure approximations.
This process is by no means rigorous. The closure approximations are no better
than the turbulence data upon which they are based. Our hope is that we can find
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closure approximations that make accurate solutions possible. We will discuss
this point in greater detail when we introduce two-equation models.

Reynolds-Stress Tensor: For the class of turbulence models considered in
this chapter, we assume the Boussinesq approximation is valid. Thus, we say
that the specific Reynolds-stress tensor is given by

2
Tij = 2wpSi; — kb (4.8)

where S;; is the mean strain-rate tensor. Note that the second term on the
right-hand side of Equation (4.8) is needed to obtain the proper trace of 7y;.
That is, since Sy; = 0 for incompressible flow, contracting Equation (4.8) yields
T:i = —2k in accord with Equation (4.3).

Strictly, we should regard Equation (4.8) as the definition of v,. In this
spirit, no approximation is implied, provided we don’t explicitly say v, is a
scalar. However, for the purposes of this chapter, we do in fact assume v, is a
scalar so that the term “approximation” is appropriate.

Turbulent Transport and Pressure Diffusion: The standard approximation
made to represent turbulent transport of scalar quantities in a turbulent flow is that
of gradient-diffusion. In analogy to molecular transport processes, we say that
—w ~ vr0®/0x;. Unfortunately, there is no corresponding straightforward
analog for the pressure-diffusion term. In the absence of definitive experimental
data, the pressure-diffusion term has generally been grouped with the turbulent-
transport term, and the sum assumed to behave as a gradient-transport process.
Fortunately, DNS results [e.g., Mansour, Kim and Moin (1988)] indicate that the
term is quite small for simple flows. Thus, we assume that

I 77 Vo Ik
S PR 4.
= pp uy o Oy (4.9)

where oy is a closure coefficient. Assuming the vectors on the lefi- and right-
hand sides of Equation (4.9) are parallel (a somewhat optimistic assumption!),
this equation defines o,. As stressed by Bradshaw (1994), this statement applies
to all turbulence closure coefficients. At this point, no approximation has entered
although, of course, we hope the model is realistic enough that o, can be chosen
to be constant.

Dissipation: The manner in which we determine the dissipation is not unique
amongst turbulence energy equation models. It suffices at this point to note that
we still have two unknown parameters, which are the turbulence length scale, ¢,
and the dissipation, €. If both properties are assumed to be strictly functions of
the turbulence independent of natural fluid properties such as molecular viscosity,
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purely dimensional arguments [Taylor (1935)] show that
e~ k32/¢0 (4.10)

Hence, we still need a prescription for the length scale of the turbulence in order
to close our system of equations. In the following sections, we will explore the
various methods that have been devised to determine the length scale.

Combining Equations (4.4) and (4.9), we can write the modeled version of
the turbulence kinetic energy equation that is used in virtually all turbulence
energy equation models. The equation assumes the following form,

ok ok oU; 0
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where 7;; is given by Equation (4.8).

4.2 One-Equation Models

To complete the closure of the turbulence kinetic energy equation, Prandt] (1945)
postulated that the dissipation assumes the form quoted in Equation (4.10). In-
troducing a closure coefficient that we will call (7, the dissipation is

e =Cok32/¢ (4.12)

and the turbulence length scale remains the only unspecified part of the model.
Given twenty years of experience with the mixing-length model, Prandtl had
sufficient confidence that he could generalize established prescriptions for the
turbulence length scale ¢. [Of course, £ o< £, only if the ratio of produc-
tion to dissipation is constant. To see this, note that in a thin shear layer,
Equation (3.18) gives 8U/8y = (—uv")1/2/f ;. Hence, balancing production
and dissipation means —u'v’AU/0y = (—uV)3/2 [hmir = Cpk3/2/¢ so that
€ X Uiz if —u/V7/k = constant.] As we will discuss further below, measure-
ments show that the constant is about 0.3 for many thin shear layers. Thus,
Prandti’s One-Equation Model is as follows:

Ok Ok __ OU. . K/ B
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1

where 7;; is given by Equation (4.8) and the kinematic eddy viscosity is
vr = kY20 = Cpk? /e (4.14)

Note that at this point we make an implicit assumption regarding the “con-
stant” in Equation (4.2), which has been set equal to one in Equation (4.14).
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That is, there is no a priori reason why v should depend only upon k and 4, i.e.,
no reason why “constant” should really be constant. In reality, v, is the ratio of a
turbulence quantity (e.g., —©/v’) to a mean flow quantity (e.g., 8U/dy+0V/dx).
Consequently, v, will not, in general, precisely follow mean-flow scales such as
U. and ¢6* or turbulence scales such as k£ and £. Only in equilibrium flows for
which production and dissipation balance are mean-flow and turbulence scales
proportional — and then either can be used for vr. Otherwise, an unknown mix
of scales is needed.

Emmons (1954) independently proposed essentially the same model. Before
the model can be used in applications, the length scale, ¢, and the closure coeffi-
cients o and C, must be specified. Emmons (1954) and Glushko (1965) applied
this model to several flows with some degree of success using Equation (4.14)
with oz = 1 and C ranging between 0.07 and 0.09. Their length scale dis-
tributions were similar to those used for the mixing-length model. Wolfshtein
(1967) found that by introducing damping factors in the dissipation and eddy
viscosity similar to the Van Driest factor [Equation {3.105)], more satisfactory
results can be obtained with this model for low-Reynolds-number flows. More
recently, Goldberg (1991) has refined the model even further.

Although it is clearly more complex than an algebraic model, the Prandtl-
Emmons-Glushko one-equation model is certainly straightforward and elegant.
As originally postulated it involves two closure coefficients and one closure func-
tion (the length scale). Even with Wolfshtein’s low-Reynolds-number corrections,
the number of closure coefficients increases by only two so that the model ac-
tually has fewer closure coefficients than the Baldwin-Lomax and Johnson-King
models. For attached flows, the Goldberg model has five closure coefficients,
two damping functions, and a closure function for the length scale. Goldberg’s
number of closure coefficients and empirical functions more than doubles for
separated flows.

Bradshaw, Ferriss and Atwell (1967) formulated a one-equation model that
avoids introducing a gradient-diffusion approximation. Rather than introduce the
Boussinesq approximation, they argue that for a wide range of flows, the ratio
of the Reynolds shear stress, 7., to the turbulence kinetic energy, k, is constant.
Measurements [Townsend (1976)} indicate that for boundary layers, wakes and
mixing layers the ratio is nearly the same and given by

Ty == Oek, Gr =0.3 (4.15)

The stress/energy ratio, i.e., the constant j3,, is often referred to as Bradshaw’s
constant, and sometimes as Townsend’s constant.! Building upon this presum-
ably universal result, Bradshaw, Ferriss and Atwell formulated a one-equation
model based on the turbulence kinetic energy. A novel feature of their formula-
tion is that the equations are hyperbolic for boundary layers rather than parabolic.

I'The notation Ty = 2a1k is sometimes used where a; =~ 0.15.
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This is a direct consequence of modeling the & equation’s turbulent transport term
by a “bulk-convection” process rather than a gradient-diffusion approximation as
in Equation (4.11). The resulting equations are thus solved by using the method
of characteristics.
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Figure 4.1: Comparison of computed and measured skin Jfriction for Bradshaw
Flow C; —— Bradshaw-Ferriss-Atwell model; o Bradshaw.

Figure 4.1 compares computed and measured skin friction for Flow 3300
of the 1968 AFOSR-IFP-Stanford Conference on the Computation of Turbulent
Boundary Layers. As shown, the differences between theory and experiment are
even less than those obtained using the Cebeci-Smith and Baldwin-Lomax models
[see Figure 3.17]. Overall, the Bradshaw-Ferriss-Atwell model’s skin friction for
boundary layers in adverse pressure gradient was closest of the various models
tested in the 1968 Conference to measured values.

One-equation models have been formulated that are based on something other
than the turbulence energy equation. Nee and Kovasznay (1968), for example,
postulated a phenomenological transport equation for the kinematic eddy viscos-
ity, vr. The equation involves terms similar to those appearing in Equation (4.13).
The model has four closure coefficients and requires prescription of the turbu-
lence length scale. Sekundov (1971) dcveloped a similar model that has generated
considerable interest in the Russian research community, but that has rarely been
referenced in Western journals. The English-language report of Gulyaev et al.
(1993) summarizes work on the Sekundov model in its 1992 version. The paper
by Vasiliev et al. (1997) shows that the 1971 version, although very simple, is
complete and quite capable.

Baldwin and Barth (1990), Spalart and Allmaras (1992) and Menter (1994)
have devised even more elaborate model equations for the eddy viscosity. The
Baldwin-Barth model, for example, includes seven closure coefficients and three
empirical damping functions. The Baldwin-Barth model is as follows.
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Kinematic Eddy Viscosity:
vr = C,vRrD1 D (4.16)

Turbulence Reynolds Number:

% (vRe) + Ujé% (vRr) = (Cafz = Ca) y/vR:P
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+(v + vr/oe) (4.17)

Closure Coefficients and Auxiliary Relations:
Ca =12, Cop=20, C,=0.09, AF =26, A =10 (4.18)
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The Baldwin-Barth model is complete as it involves no adjustable functions
or coefficients. While this guarantees nothing regarding its suitability for a given
application, it does make its implementation convenient. This type of model
constitutes the simplest complete model of turbulence.

Note that the Baldwin-Barth model circumvents the need to specify a dissi-
pation length such as the quantity ¢ in Equation (4.13) by expressing the decay,
or dissipation, of the eddy viscosity in terms of spatial gradients. That is, the
dissipation term in Equation (4.17), €, is

, k =0.41 (4.19)

(4.20)

_ 1 9vr 8(vRx)

&y =

- 423
oe Oz, Oxpk ( )
As a consequence of this closure approximation, €, = 0 when spatial gradients
vanish. Thus, rather than decaying with streamwise distance, the eddy viscosity
will remain constant in a uniform stream. This incorrect feature can produce non-
physical diffusion in a numerical computation, for example, of a multi-element
airfoil .
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The Spalart-Allmaras model is also written in terms of the eddy viscosity.
The model includes eight closure coefficients and three closure functions. Its
defining equations are as follows.

Kinematic Eddy Viscosity:
Vr = Ufy1 (4.24)

Eddy Viscosity Equation:

o O . 7\’ 1 o o | ey 05 O
S A Ujae = 180 — cpifuw 2 e 7kl [ L R
ot * 7 9z ; @15¥ = Cuf, (d) ¥ o Ox [(V+y)8mk] = o Oxy Ox,
(4.25)
Closure Coefficients and Auxiliary Relations:
cp1 = 0.1355, cp2 =0.622, ¢,; =7.1, 0 =2/3 (4.26)
1
G = C% + (—i—@, cuw2 =03, cpz3 =2, k=041 (4.27)
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The tensor Q;; = 1(0U;/0z; — U, /Bx;) is the rotation tensor and d is
distance from the closest surface. Although not listed here, the model even
includes a transition correction that introduces four additional closure coefficients
and two more empirical functions. Finally, note that the source terms for the eddy
viscosity equation depend upon the distance from the closest surface, d, as well
as upon the gradient of &. Since d — oo far from solid boundaries, this model
also predicts no decay of the eddy viscosity in a uniform stream.

To determine how close one-equation model predictions are to measurements,
we turn first to the five free shear flow applications considered in Section 3.3.
Since the Baldwin-Barth and Spalart-Allmaras models are complete, the turbu-
lence scales are automatically defined, i.e., neither model involves an adjustable
closure coefficient such as « in Equation (3.34). Comparing computed and mea-
sured spreading rate provides a straightforward, and concise, gauge of how well
the models reproduce measured flow properties.
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The conventional definition of spreading rate for the wake is the value of
the similarity variable, 7 = y+/pUZ /(Dxzx) (see Subsection 3.3.1), where the
velocity defect is half its maximum value. Similarly for the plane jet, round
jet and radial jet, the spreading rate is the value of y/x where the velocity is
half its centerline value. For the mixing layer, the spreading rate is usually
defined as the difference between the values of y/x where (U —Us)? /(U1 —U2)?
is 9/10 and 1/10.

Table 4.1: Free Shear Flow Spreading Rates for One-Equation Models.

[ Flow | Baldwin-Barth | Spalart-Allmaras | Measured |
Far Wake 0315 0.341 0.320-0.400
Mixing Layer — 0.109 0.103-0.120
Plane Jet - 0.157 0.100-0.110
Round Jet — 0.248 0.086-0.096
Radial Jet - 0.166 0.096-0.110

Table 4.1 compares computed and measured spreading rates for the Baldwin-
Barth and Spalart-Allmaras models. The numerical results for the Spalart-
Allmaras model have been obtained using Programs WAKE, JET and MIXER
(sece Appendix C). The table includes only the far-wake spreading rate inferred
from the computations of Baldwin and Barth (1990) for the Baldwin-Barth model.
Figures 4.2 and 4.3 compare computed and measured velocity profiles for the far
wake and the mixing layer.

Attempts at incorporating the Baldwin-Barth model in WAKE, JET and
MIXER have proven unsuccessful because the tridiagonal matrix corresponding
to the discretized form of the equation for R is ill conditioned. Contrary to
the comments of Baldwin and Barth (1990), who warn of possible numerical
difficulties, the problem does not stem from poor grid resolution. Rather, the
model predicts a sharp discontinuity in the eddy viscosity just inside the edge of
the shear layer that destabilizes the computation, independent of grid size.

The Baldwin-Barth model predicts a far-wake spreading rate 2% below the
lower bound of measured values, while the Spalart-Allmaras model’s spreading
rate is within the range of measurements. The Spalart-Allmaras model’s mixing-
layer spreading rate is also within the range the measured values. However, its
predicted plane-jet and radial-jet spreading rates are more than 40% higher than
measured, while the round-jet value is nearly triple the corresponding experimen-
tal value. These results are entirely consistent with the fact that these models
have been optimized for aerodynamic applications, most notably for flow past a
wing. The mixing layer and far wake are salient in this context, while jets are
not. These applications do show one of the limitations of the Spalart-Allmaras
model, i.e., it is unsuitable for applications involving jet-like free shear regions.
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Figure 4.2: Comparison of computed and measured far-wake velocity profiles:
—— Spalart-Alimaras model; e Fage and Falkner (1932); o Weygandt and Mehta
(1995).
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Figure 4.3: Comparison of computed and measured velocity profiles for a mixing
layer: — Spalart-Allmaras model: o Liepmann and Laufer (1947).
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Figure 4.4 compares computed and measured skin friction for the sixteen
boundary layers with pressure gradient used to assess algebraic models in Chap-
ter 3. All computations have been done with Program EDDYBL (see Ap-
pendix C). Table 4.2 summarizes overall differences between computed and
measured ¢y for the Baldwin-Barth and Spalart-Allmaras models. The overall
average difference at the final station for the flows is 24% for the Baldwin-Barth
model and 14% for the Spalart-Allmaras model.

Table 4.2: Differences Between Computed and Measured Skin Friction.

[ Pressure Gradient | Flows | Baldwin-Barth | Spalart-Allmaras |
Favorable 1400, 1300, 2700, 6300 2% 1%
Mild Adverse 1100, 2100, 2500, 4800 19% 10%
Moderate Adverse | 2400, 2600, 3300, 4500 32% 10%
Strong Adverse 0141, 1200, 4400, 5300 44% 33%
All - 24% 14%

The Baldwin-Barth model’s predicted skin friction is consistently smaller than
measured for boundary layers with adverse pressure gradient. As an exampile,
for the Samuel-Joubert increasingly adverse pressure gradient case (Flow 0141),
the computed skin friction is 47% lower than the measured value. Although all
twelve adverse-pressure-gradient flows are attached, the Baldwin-Barth model
predicts separation for three cases, viz., Flows 4800 (mild adverse Vp), 4500
(moderate adverse Vp) and 5300 (strong adverse Vp). This clearly illustrates the
model’s tendency to respond too strongly to adverse pressure gradient, relative
to measurements, in the sense that it always predicts too large of a decrease in
skin friction.

As shown by Sai and Lutfy (1995), the Baldwin-Barth model is extremely
sensitive to the freestream value of the eddy viscosity. While using nonphysically
large values for R, reduces differences between computed and measured ¢y, no
freestream values have been found that can prevent separation for Flows 4800,
4500 and 5300.

By contrast, aside from transients near the beginning of several of the compu-
tations, the Spalart-Allmaras c¢ is as close to corresponding measured values as
the Baldwin-Lomax algebraic model. For the Samuel-Joubert case, the computed
skin friction is 5% higher than measured. The sole case with large differences
between computed and measured flow properties is the “incipient-separation”
case of Stratford (1959), i.e., Flow 5300. As shown in Figure 4.4, the predicted
value of ¢y at the end of the computation is 3.4 times the measured value. Re-
call that the Johnson-King 1/2-equation model (see Figure 3.19) exhibits similar
behavior for this flow, while being much closer to measurements for the other
fifteen cases.
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Figure 4.4: Computed and measured skin friction for boundary layers subjected
lo a pressure gradient. Top row - favorable Vp; next to top row - mild adverse
Vp; next to bottom row - moderate adverse Vp; bottom row - strong adverse
Vp. — Spalart-Allmaras model; - - - Baldwin-Barth model; o measured.
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Figure 4.5: Computed and measured flow properties for Driver’s separated flow;
— Spalart-Allmaras model; - - - Baldwin-Barth model; o Driver.

Figure 4.5 shows how the Spalart-Allmaras and Baldwin-Barth models fare
for Driver’s separated flow as demonstrated by Menter (1992b, 1994). The
Spalart-Allmaras model predicts a separation bubble that is about 60% larger
than measured. The Baldwin-Barth model skin friction deviates from measured
values even more than the Baldwin-Lomax model (sece Figure 3.18), with a
predicted separation bubble region that is more than twice the size measured by
Driver. The results for the Baldwin-Barth model are not surprising in light of
how poorly the model fares for attached boundary layers in adverse Vp.

The backward-facing step (Figure 4.6) is a popular test case for turbulence
models because the geometry 1s simple. Additionally, separation occurs at the

CORNER EDDY
RECIRCULATING FLOW
v g
/ - DIVIDING STREAMLIN

2/ H—

SEPARATION REATTACHMENMT

TUNNEL GEOMETRY: H=127cm, y, = 8H
TUNMNEL SPAN: 12H
TOP-WALL ANGLES: -2° < n < 10°

INLET CONDITIONS: UREF = 4.2 misec, Mppp = 0128
3y = 1.9 cm, Rey = 5000

Figure 4.6: Backward-facing step flow geometry and inlet conditions for the
Driver-Seegmiller (1985) experiments. [From Driver and Seegmiller (1985) —
Copyright © AIAA 1985 — Used with permission.]
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sharp corner so the flow is easier to predict than a flow for which the separation
point is unknown a priori. Figure 4.7 compares computed and measured [Driver
and Seegmiller (1985)] skin friction for backstep flow with the upper channel
wall inclined to the lower wall at 0°. The Spalart-Allmaras model predicts
reattachment at 6.1 step heights, H, downstream of the step. This is within 3%
of the measured value of 6.26. Although not shown here, the model predicts
reattachment at 8.6 H when the upper wall is inclined at 6°, which is within 6%
of the measured value of 8.1H.
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Figure 4.7: Computed and measured skin friction for flow past a backward-
Jacing step; —— Spalart-Allmaras model: o Driver-Seegmiller.

Thus, on balance, Spalart-Allmaras predictions are satisfactory for many en-
gineering applications. It is especially attractive for airfoil and wing applications,
for which it has been calibrated. Its failure to accurately reproduce jet spreading
rates is a cause for concern, and should serve as a warning that the model has
some shortcomings. Nevertheless, the model appears to be a valuable engineering
tool.

By contrast, the Baldwin-Barth model predicts much larger discrepancies
between computed and measured c; than the Spalart-Allmaras model and the
much simpler algebraic models. The discrepancies are so large (an average of
24% for the 16 attached boundary-layer cases) that its use for boundary-layer
flows is inadvisable. 1t is also extremely sensitive to the freestream value of the
eddy viscosity and can be very difficult to cast in finite-difference form (e.g., by
yiclding ill-conditioned matrices). Given all of these flaws, the model should be
abandoned in favor of the Spalart-Allmaras model.

In light of these facts, we have not yet arrived at a universal turbulence
model. In general, one-equation models share a few of the failures as well as
most of the successes of the mixing-length model. While there is a smaller
need for adjustment from flow to flow than with the mixing-length model, the
Spalart-Alimaras model, as good as it is, is unable to predict spreading rates
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for plane, round and radial jets that are consistent with measurements. Also,
while the model’s predictions for attached boundary layers are usually as close
to measurements as those of algebraic models, its skin friction for the Stratford
incipient-separation case (Flow 5300) is several times higher than measured.
Finally, while it provides close agreement with measured reattachment length for
the backward-facing step and airfoils with small separation bubbles, its predicted
separation bubble for the Driver flow is significantly larger than measured. This
erratic pattern is a bit discomforting, and suggests that something better is needed
for general turbulent-flow applications. To reach a more-nearly universal model,
especially for separated flows, we must seek a model in which transport effects
for the velocity and length scales are accounted for separately. The rest of this
chapter is devoted to investigating such models.

4.3 Two-Equation Models

Two-Equation Models of turbulence have served as the foundation for much
of the turbulence-model research during the past three decades. For example,
almost all of the computations done for the 1980-81 AFOSR-HTTM-Stanford
Conference on Complex Turbulent Flows used two-equation turbulence models.
These models provide not only for computation of k, but also for the turbulence
length scale or equivalent. Consequently, two-equation models are complete,
i.e., can be used to predict properties of a given turbulent flow with no prior
knowledge of turbulence structure.

In the following discussion of two-equation models, arguments are often pre-
sented in terms of the k-w model. This, in no way, constitutes a campaign to
popularize the model. Rather, it usually reflects either the author’s greater famil-
iarity with the k-w model (as one of its developers) or its analytical simplicity
relative to other models. Except in cases where conclusions are obvious, ev-
ery attempt has been made to leave the reader to make judgments regarding the
superiority of any model described in this book.

The starting point for virtually all two-equation medels is the Boussinesq
approximation, Equation (4.8), and the turbulence kinetic energy equation in the
form of Equation (4.11). As pointed out at the end of Section 4.1, there is an
arbitrariness in the way we define the turbulence length scale, ¢, to go with the
velocity scale, k1/2.

Kolmogorov (1942), for example, pointed out that a second transport equation
is needed to compute the so-called specific dissipation rate, w. This quantity has
dimensions of (time)~!. On dimensional grounds, the eddy viscosity, turbulence
length scale and dissipation can be determined from

vr ~kjw,  E~kY? W, e~ wk (4.31)



